
POA

POADAO v1

Original Publication Dates

The first draft of the whitepaper was distributed on Oct 4, 2017 . Read more here:
https://medium.com/poa-network/introducing-oracles-network-864d1d7e37e2

The last revision was made Sep 28, 2018 to adjust several figures.

Abstract

In this paper we propose an open, permissioned network based on Ethereum protocol with
Proof of Authority consensus by independent validators.

Authors: Igor Barinov, Viktor Baranov, Pavel Khahulin

Sections

Introduction
Proof of Authority
POA Network Functionality
Decentralized Applications
Summary & Acknowledgements
References
Appendix A: Code Samples

https://medium.com/poa-network/introducing-oracles-network-864d1d7e37e2

Introduction

POA Network is an open, public, permissioned blockchain based on the Ethereum protocol.
To reach consensus on a global state, it uses a Proof of Authority consensus algorithm.
PoA consensus is a straightforward and efficient form of Proof of Stake with known
validators and governance-based penalty system. A list of validators is managed by a
smart contract with governance by validators.

During an initial ceremony, the master of ceremony distributes keys to 12 independent
validators. They add 12 plus one more to reach initial requirements for the consensus. To
be validators on the network, a master of ceremony asks them to have an active notary
public license within the United States. A concerned third party can cross-validate
validators' identities using open data sources and ensure that each validator is a good
actor with no criminal record. In the proposed network, the identity of an individual validator
and the trust of independent and non-affiliated participants secures the consensus.

The network is fully compatible with Ethereum protocol. The network supports only Parity
client version 1.7 and later. The network supports trusted setup, on-chain governance, and a
variety of "proof of identity" oracles.

We believe that POA Network will close a gap between private and public networks, and will
become a model for open networks based on PoA consensus.

Proof of Authority

AuthorityRound (AuRa)

Aura is one of the Blockchain consensus algorithms available in OpenEthereum (previously
Parity). It is capable of tolerating up to 50% of malicious nodes with chain reorganizations
possible up to a limited depth, dependent on the number of validators, after which finality is
guaranteed. This consensus requires a set of validators to be specified, which determines
the list of blockchain addresses which participate in the consensus at each height. Sealing
a block is the act of collecting transactions and attaching a header to produce a block.

At each step the primary node is chosen that is entitled to seal and broadcast a block,
specifically step modulo #_of_validators the validator is chosen from the set. Blocks

should be always sealed on top of the latest known block in the canonical chain. The
block's header includes the step and the primary's signature of the block hash.

Block can be verified by checking that the signature belongs to the correct primary for the
given step. Finality of the chain can be achieved within at most 2 x #_of_validator

steps, after more than 50% of the nodes are signed on a chain and then they are signed
again on those signatures.

History of POA

On March 6, 2017, a group of blockchain companies announced new blockchain based on
Ethereum protocol with Proof of Authority consensus . Spam attack on the Ropsten testnet
was the reason to create a new public test network. This network was named Kovan, for a
metro station in Singapore, where companies who founded the network are located. It is a
common name convention for Ethereum test networks, for example, Morden, Ropsten, and
Rinkeby are names of metro stations.

Adoption of Kovan blockchain

In the table below we show stats for Main (Homestead) and Test (Kovan) Ethereum
networks.

Network Type
Blocks
mined

Tx created
Contract
created

Accounts
created

Kovan Testnet 3,417,527 2,859,549 54,384 18,082 Text

Homestead Mainnet 4,203,319 50,374,359 1,488,072 4,957,479 Text

Large numbers of transactions, smart contracts, and accounts on the test network show
adoption from the community and proven utility benefit.

POA Network Functionality

Validators

Independent U.S. public notaries with active commission license will be the first validators
in POA Network. For the initial ceremony, 12 initial keys will be created by a master of
ceremony. He will distribute those keys to individual validators. Each validator will change a
key to a new subset of keys using a client-side DApp. After the initial distribution of
licenses, an additional validator can be added through the voting process on the built-in
Governance DApp. A majority of votes will be needed from validators to be accepted into
the smart contract with a list of validators.

Economy

Crowdsale will take place before the launch of the main network. Purchased coins will be
included in the genesis block and will create initial liquidity for the network.

Validators will start to create blocks and generate a reward for the network security. For
each generated block, a validator who created it will get one coin and all fees for
transactions. Each validator has equal rights to create a block.

The network will start with 12 validators. With 12 validators active, each validator will
create one block every 12 blocks. For each block one coin will be created as a reward for
validators and one coin for self sustaining of the network.

A block will be generated with an average time of 5 seconds. During the first year of the
network, validators will create 31,536,000 sec/5 sec per block = 6,307,200 blocks.

The emission rate for validators is 2.5% for the first year of the network. The network will
use disinflation model, and emission will decrease every year. An additional 2.5% will be
added to support sustainability of the network.

Therefore, 2.5% of the network supply will be generated as a reward for validators to secure
the network. And 2.5% of total supply will be distributed to support sustainability. Validators
will be able to propose areas of spending:

Emission rate. X-axis - %, Y-axis - Years

burn coins
hold coins
spend on R&D Foundation

Sustainability emission will be governed by decentralized apps.

Use Cases

Inexpensive Network

POA Network provides inexpensive consensus to secure the network. Users can run
Ethereum programs on POA Network and spend less money on transaction fees. Overall
cost of the network's security will also be cheaper due to lower market cap.

Problem

Though the issuance of ETH is in a fixed amount each year, the rate of growth of the
monetary base (monetary inflation) is not constant. This monetary inflation rate decreases
every year, making ETH a disinflationary currency (in terms of monetary base). Disinflation
is a special case of inflation in which the amount of inflation shrinks over time.

In 2017 the issuance rate of Ether is 14.75%. Roughly five Ethers per block are issued.
Because Ethereum rewards Uncles it means that there may be more or less than five Ethers.

By 9/7/2017 miners generated 21,335,541.72 ETH as Mining Block Reward and
1,181,201.88 Mining Uncle Reward. For securing the network, they received a total of
22,516,743.6 ETH. Using the 9/7/2017 price of $303.86, security of the network costs
22516743.6 ETH * $303.86 = $6,841,937,710.296.

There are 56,048,767 transactions on the network. Security of a transaction in the main
Ethereum network costs are about $122.07 at the current rate.

Solution

In POA Network the issuance rate is 2.5% with future disinflation. There is no Mining Uncle
Reward in the network, because consensus is not based on Proof of Work.

Validators with known identity

Each validator of the network will prove his/her identity using "proof of identity" DApps.
Each block will be attributed with the identity of a validator. If a miner breaks the rules of
the open network, e.g. will not accept a transaction to a specific address, participants of the
network will have legal instruments to resolve that problem.

Fast network

Validators in POA Network create blocks every five seconds. This rate is tested on Kovan
testnet and usable in the long-term. A faster network allows for building new types of
applications where response rate from the distributed consensus is important.

Legally recognizable hard forks

Hard fork is a change of the software. After applying this software, old clients will not be
able to work on the new network. All validators on the network are residents of the U.S.
Therefore, they are all located in the same legal system. Hard fork decisions will be signed
as legal documents and will be recognizable in a court system. This will bring protections
to participants of the network and will open new possibilities to decide how to deal with
ongoing changes.

Model for experiments

The network is built to iterate fast. In the future many open and independent networks
based on Ethereum protocol will operate and have interface for interoperability.

Security Risks

Key compromise

During the initial ceremony, validators will be required to replace their initial keys with a set
of three keys. Mining keys are located on a mining node. If a node is compromised,
validators will create a ballot using Governance DApp and propose replacement of the
mining key. If a voting key is compromised, a validator will ask another validator to create a
ballot to replace his/her voting key. If a payout key is compromised, a validator will create a
ballot to replace his/her payout key. Because payout is not required, a validator can specify
a new payout key on a mining node without proposing ballots.

Censoring signer

Censoring signing is an attack vector in which a signer or a group of signers attempts to
censor out blocks that vote on removing them from the validators list. To work around this,
we restrict the allowed minting frequency of signers to 1 out of N. This ensures that
malicious signers need to control at least 51% of signing accounts, at which case it's game
over anyway.

Regulatory risks

All validators are required to have an active notary commission. Doing block validation
under the name of a notary public may be considered as false advertising and a regulator
may revoke the notary commission from the validator. The network will mitigate the risk by
providing additional identity checks for a validator. Eventually, those unbiased checks will
replace the need for a validator to have an active notary commission.

Collusion of validators

Validators may become an affiliated group even though we require them to be independent.
Before distribution of initial keys, the master of ceremony will require validators to sign a

non-affiliation agreement between them and the network. All validators are in the same
jurisdiction, where the general public may enforce that agreement.

Deployment

We provide a deployment script for cloud installation of mining, boot, and general purpose
nodes. For a validator, setting up a node is a one-button solution. For a mining node, a
validator will provide

Mining Address. The address of the mining key received at the initial ceremony.
Mining Keyfile. File with the private key of the mining key.
Mining Keypass. The password to unlock the private key of the mining key.
Admin Username. Username of admin user of the virtual machine, e.g. root .

Admin SSH public key. Content of admin's SSH public key. We do not allow use of
passwords for the VMs.
Netstats Server. Network statistics, e.g. number of Active Nodes, Last Block, Avg Block
Time, Best Block, Gas Spending, Gas Limit, List of validators with parameters.
Netstats Secret. Password to the netstat server.

Decentralized apps (DApps)

The term decentralized app or DApp stands for an application which works with a smart
contract and can be deployed on any host and redeployed in case of attack or censorship
without any harm to its functions. POA Network provides sets of supported DApps for
identity verification, governance, and network administration.

Proof of Identity DApps

In POA Network, identity of individual validators plays a major role for selected consensus.
We propose a requirement for the initial validators to have an active notary commission
within one of the states of the United States, although notary commission is not an object a
validator can control solely. A regulator, e.g. a Secretary of State, may revoke notarial
license from a validator, and we propose additional checks of identity, performed in a
decentralized way.

Proof of Identity DApps is a series of decentralized applications focused on connecting a
user's identity to his/her wallet. Applications can be run on any Ethereum-compatible
network.

Initial ceremony DApp

During the initial ceremony a master of ceremony creates a set of keys for each validator.
He/She distributes them to validators one by one. Before each distribution of keys, he/she
sends a transaction to a smart contract with a list of validators. That smart contract is used
by consensus algorithm to determine if a validator has rights to participate in consensus
and create blocks. The validator's smart contracts are used by other DApps, e.g.
Governance DApp and Payout DApp.

A validator generates three keys in the Initial Ceremony DApp:

mining key, required to participate in consensus and create blocks.
voting key, required to create ballots and vote on ballots.
payout key, not required. Used in Payout DApp to send daily mined coins from the
mining key to the payout key. If a mining node should be compromised, an attacker will
get daily earnings or less.

All keys are generated on the client side and not transmitted over the Internet without a
validator's permission and willingness. When keys are generated, the validator stores them
on secure local storage, e.g. saves them to a hardware wallet and the password to a
password manager. The validator signs a transaction to the validator's contract with the
initial key, provided by the master of ceremony.

Initial ceremony is a required procedure to start a new network based on POA Network's
ideas of independent validators.

Proof of Physical Address (PoPA) DApp

 Click on Image to Enlarge: User fills out a form in DApp and submits it to the server.

Proof of Physical Address (PoPA) DApp

Using Proof of Physical Address, a user can confirm his/her physical address. It can be
used to prove residency.

Typical workflow for Identity DApps on PoPA example

Server consists of a web app and a Parity node connected to the blockchain. The node is
run under the Ethereum account that was used to deploy the PoPA contract (contract's
owner), and this account needs to be unlocked. It shouldn't have any ether on it though, as

it doesn't send any more transactions.

Server validates and normalizes the user's input: removes trailing spaces, converts letters to
lower case. Then it generates a random confirmation code (alphanumeric sequence) and
computes its SHA-3 (strictly speaking, keccak256) hash. Also, it generates a random
session code (see below), that it stores in memory/database along with the user's eth
address and plain text confirmation code. Then the server combines input data, namely
str2sign = (user's eth address + user's name + all parts of physical address +
confirmation code's hash)

into a string that is hashed and signed with the owner 's private key.

(This is why the owner 's account needs to be unlocked. In the next release of web3js it will

probably become possible to sign using a private key without unlocking.)

Signature, the confirmation code's hash, the user's normalized input, and the session code
are sent back to the client. User then confirms the transaction in MetaMask and invokes the
contract's method. The contract combines input data in the same order as the server did,
hashes it, and then uses the built-in function ecrecover to validate that the signature

belongs to the owner . If it doesn't, the contract rejects the transaction, otherwise it adds

some metadata, most importantly the current block's number, and saves it in the
blockchain.

When the transaction is mined, tx_id is returned to the client and then via the client to the

server, along with the session code. Server queries memory by the session code and
validates the user's eth address. Then it fetches the transaction from the blockchain by
tx_id . It verifies that tx.to is equal to owner and tx.from is equal to the user's eth

address. Then, using tx.blockNumber the server uses the contract's method to find the

physical address added at that blockNumber. User should be limited to registering at most
one address per eth block. Since block generation time is less than a minute, it shouldn't be
too restrictive on the user.

Having fetched the address from the contract, the server calls postoffice's api (lob.com) to
create a postcard. Server uses the session code to get plain text confirmation code from
memory and print it on the postcard. Then the server removes this session code from
memory to prevent reuse.

When the postcard arrives, the user enters the confirmation code in DApp, DApps gets
signature from the server and invokes the contract's method. Contract verifies signature,
computes the confirmation code's hash and loops over the user's addresses to find the
matching one.

Possible cheating:

1. user can generate his/her own confirmation code, compute all hashes and submit it to
the contract, and then confirm it This can't be done because the user doesn't know the
owner 's private key and therefore can't compute a valid signature.

2. user can reuse someone else's confirmation code, or his/her own confirmation code
from one of the previously confirmed addresses This is prevented by hashing all
essential pieces of data together before signing (user's eth address, full physical
address, confirmation code) and by checking the address for duplicates in the contract.

3. user can submit the form, but doesn't sign the transaction For this reason the postcard
is sent after the address is added to the blockchain and tx_id is presented to the

server.
4. user can submit the form and sign the transaction, but sends another address to the

server to send postcard to After the first transaction is mined, the server sees for itself
what address was added and fetches it from the contract instead of trusting the client.
Session code is then used to retrieve the corresponding confirmation code. To simpify
things, we can limit the user to only submitting a single address per block. In this case,
the contract just needs to find the first record with matching creation_block

5. user can resubmit the same tx_id to the server multiple times This is prevented by
removing the session code from memory after the first postcard is sent.

Proof of Bank Account DApp

Click on image to enlarge

In contrast to other identity DApps, PoBA is (from the contract's point of view) a one-step
verification process.

DApp client and server are integrated with bank accounting API service (plaid.com).

Client side uses the service's widget (Plaid Link) to authenticate the user, and as a result of
successful authentication, access_token is returned from Plaid to the client. User then fills
out a form with his/her bank account number and submits it to the server alongside Plaid's
access token.

Server consists of a web app and a parity node connected to the blockchain. The node is
run under the ethereum account that was used to deploy the PoP contract (contract's
owner). This account needs to be unlocked.

Server validates and normalizes the user's account number by removing trailing spaces.
Then the server fetches the bank account numbers from Plaid using access_token. It
checks that the account number submitted by the user is present in the list returned by
Plaid.

Server then combines user's eth address + bank's name + account number into a

single string and hashes it with SHA-3 function. The hash is then signed with owner 's

private key (this is why owner account needs to be unlocked).

Signature, normalized account number, and bank name are returned to the client. User then
signs the transaction in MetaMask and invokes the contract's method.

Contract checks that the account number for this bank for this eth address doesn't already
exist. If it does, the contract rejects the transaction. Otherwise, it combines parameters in
the same order as the server did and computes sha3 hash of them. Then it uses the built-

in ecrecover function to validate that the signature belongs to the owner . If it doesn't,

the contract rejects the transaction, otherwise, it saves the information to the blockchain.

Possible cheating

1. user can generate his/her own confirmation code, compute all hashes, and submit it to
the contract, and then confirm it This can't be done because the user doesn't know the
owner 's private key and hence can't compute a valid signature.

2. user can use someone else's access_token returned by Plaid and thus verify the
account he/she has no real access to This is equivalent to either hacking someone
else's computer or the account's owner deliberately providing the user with his/her
access_token. Since all communications with Plaid are via HTTPS protocol, there is no
way for the user to intercept access_token sent to someone else.

Proof of Social Network DApp

Click on image to enlarge

User fills out a form in DApp providing the link to his/her social network profile and submits
it to the server.

Server consists of a web app and a parity node connected to the blockchain. The node is
run under the ethereum account that was used to deploy the PoSN contract (contract's
owner). This account needs to be unlocked.

Server validates and normalizes the user's profile link: removes trailing spaces, converts
protocol to HTTPS if applicable, domain name to lowercase, and removes extra URL

parameters.

Then it generates a random confirmation code (alphanumeric sequence) and computes its
SHA-3 (strictly speaking, keccak256) hash. Also, it generates a random session code (see
below), that it stores in memory/database along with the user's eth address and plain text
confirmation code. Then server combines input data, namely
str2sign = (user's eth address + user's profile link + confirmation code's hash

) into a string that is hashed and signed with owner 's private key (this is why owner 's

account needs to be unlocked).

Signature, the confirmation code's hash, the user's normalized profile link, and the session
code are sent back to the client. User then confirms the transaction in MetaMask and
invokes the contract's method. The contract combines input data in the same order as the
server did, hashes it, and then uses the built-in function ecrecover to validate that the

signature belongs to the owner . If it doesn't, the contract rejects the transaction, otherwise

it adds some metadata, most importantly the current block's number, and saves it in the
blockchain.

When the transaction is mined, tx_id is returned to the client and then via the client to the

server along with the session code. Server queries memory by the session code and
validates the user's eth address. Then it fetches the transaction from the blockchain by
tx_id . It verifies that tx.to is equal to owner and tx.from is equal to the user's eth

address. Then, using tx.blockNumber the server uses the contract's method to find the

profile link added at that blockNumber. User should be limited to registering at most one
profile link per eth block.

Then the server uses the session code to get plain text confirmation code from memory and
enclose it into a predefined meaningful text, e.g.:

My POA identity confirmation code is <confirmation code>

(As a side note, it'd be funny if the confirmation code was a random quote from a random
book.) Then the server sends this confirmation phrase back to the client and removes the
session code from memory to prevent reuse.

User must create a publicly available post where the confirmation phrase would appear
alone, on a separate line (there may be other text in this post, on other lines).

Then the user returns to the DApp and submits the link to his/her post. Server needs to
scrape this post, find a line starting with the predefined text and extract the confirmation
code from it. Server then calculates SHA-3 of the confirmation code and signs it with the
owner 's private key. Hash of the confirmation code and signature is returned to the client.

User then confirms the transaction in MetaMask, which invokes the contract's method.
Contract first of all uses ecrecover to verify that the signature belongs to the owner . If it

doesn't, the contract rejects the transaction, otherwise it computes the confirmation code's
hash and loops through the user's profile links to find a matching one. Server must also
double-check that post is on the same network that is in the profile link in the contract's
data.

Possible cheating

1. user can generate his/her own confirmation code, compute all hashes, and submit it to
the contract, and then confirm it This can't be done because the user doesn't know the
owner 's private key and therefore can't compute a valid signature.

2. user can reuse someone else's confirmation code, or his/her own confirmation code
from one of the previously confirmed profile links This is prevented by hashing all
essential pieces of data together before signing (user's eth address, profile link,
confirmation code) and by checking the profile link for duplicates in the contract.

3. user can submit the form, but doesn't sign the transaction For this reason confirmation
phrase is sent to the client after the profile link is added to the blockchain and tx_id

presented to the server.
4. since user knows confirmation code right from the start (cf. PoPA DApp), he/she can

avoid posting the confirmation phrase and just call the contract's method directly Link
to the post should be presented to the server, which scrapes it, extracts the confirmation
code, and then signs it with the owner 's private key.

5. user can post the confirmation phrase on some other social network or website Server
should double-check that the post is on the same network as the profile link from the
contract's data. 6. user can resubmit the same tx_id to the server multiple times This is
prevented by removing the session code from memory after the first postcard is sent.

Proof of Phone Number DApp

Click on image to enlarge

User fills out a form in DApp providing his/her phone number and submits it to the server.

Server consists of a web app and a parity node connected to the blockchain. The node is
run under the ethereum account that was used to deploy the PoP contract (contract's
owner). This account needs to be unlocked.

Server validates and normalizes the user's phone number: removes trailing spaces, converts
it to international format.

Then it generates a random confirmation code (alphanumeric sequence) and computes its
SHA-3 (strictly speaking, keccak256) hash. Also, it generates a random session code (see
below) that it stores in memory/database along with the user's eth address and plain text
confirmation code. Then the server combines input data, namely
str2sign = (user's eth address + user's phone number + confirmation code's hash

) into a string that is hashed and signed with the owner 's private key (this is why owner 's

account needs to be unlocked).

Signature, the confirmation code's hash, the user's normalized phone number, and the
session code are sent back to the client. User then confirms the transaction in MetaMask
and invokes the contract's method. The contract combines input data in the same order as
the server did, hashes it, and then uses the built-in function ecrecover to validate that the

signature belongs to the owner . If it doesn't, the contract rejects the transaction, otherwise

it adds some metadata, most importantly the current block's number, and saves it in the
blockchain.

When the transaction is mined, tx_id is returned to the client and then via the client to the

server along with session code. Server queries memory by the session code and validates
the user's eth address. Then it fetches the transaction from the blockchain by tx_id . It

verifies that tx.to is equal to owner and tx.from is equal to the user's eth address.

Then, using tx.blockNumber the server uses the contract's method to find the phone

number added at that blockNumber. User should be limited to registering at most one
phone number per eth block.

Then the server uses the session code to get plain text confirmation code from memory and
send it via SMS service (twilio.com) to the user's phone number. Then the server removes
the session code from memory to prevent reuse.

Having received SMS with verification code, the user returns to the DApp and confirms the
transaction in MetaMask, which sends confirmation code to the contract's method directly,
without calling the server. There doesn't seem to be any need for signing this transaction
with the owner 's private key. Contract computes the confirmation code's hash and loops

over the user's phone numbers to find a matching one.

Possible cheating

1. user can generate his/her own confirmation code, compute all hashes and submit it to
the contract, and then confirm it This can't be done because the user doesn't know the
owner 's private key and therefore can't compute a valid signature.

2. user can reuse someone else's confirmation code, or his/her own confirmation code
from one of the previously confirmed phone numbers This is prevented by hashing all
essential pieces of data together before signing (user's eth address, phone number,
confirmation code) and by checking the phone number for duplicates in the contract.

3. user can submit the form, but doesn't sign the transaction For this reason, SMS is sent
after the phone number is added to the blockchain and tx_id is presented to the

server.
4. user can submit the form and sign the transaction, but sends another phone number to

the server to send SMS to After the first transaction is mined, the server sees for itself
what phone number was added and fetches it from the contract instead of trusting the
client. Session code is then used to retrieve the corresponding confirmation code. To
simpify things, we can limit the user to only submitting a single phone number per
block. In this case the contract just needs to find the first record with matching
creation_block .

5. user can resubmit the same tx_id to the server multiple times This is prevented by
removing the session code from memory after the first postcard was sent.

Governance DApp

Click image to enlarge

This client-side DApp provides the list of existing ballots with the ability of filtering by
active, unanswered, and expired ballots, and gives the opportunity to create new ballots and
to vote for or against notaries.

The governance is available only with a valid voting key that should be selected in the
MetaMask Google Chrome plugin.

Creating a new ballot

 Valid notary of the POA Network fills out a form in DApp providing:

mining key - mining key of a new or existing notary, which will be voted on
affected key type - key type (mining, payout, or voting key) of a new or existing notary,
which will be voted on
memo - brief information about notary, which will be voted on
action - add affected key to the network or remove it from the network

If the affected key type is mining key, the user will be asked to provide personal data of the
notary (owner of this mining key) such as full name, physical address, U.S. state name, zip
code, notary license ID, and notary license expiration date.

At the final step, one transaction to create a new ballot in POA contract will be pushed to
the blockchain to add a new ballot after the user presses "Continue" button. It should be
noted, that in case of a mining key, it will be two consistent transactions: to add personal
data of a notary and a new ballot to contract. User will see MetaMask popups equal to the
number of transactions. After the confirmation and successful mining of the transaction by
existing validators, the user will see the created ballot in the list and be able to vote on it.

Voting on a ballot

Click image to enlarge

The user can see all his/her unanswered ballots by clicking on the self-titled button on the
filtering panel. The list of unanswered ballots will be displayed after filtering, and the "Vote
now" button will be enabled for any item in the list. After clicking on this button, a preview
of the ballot will be opened with the notary's personal data, statistics of voting, and time to
ballot's ending. Two buttons will be enabled here: "Vote for" and "Vote against". After
clicking on any of them, the transaction to account the user's voice will be generated, and a
MetaMask popup will be shown with the transaction information. After the confirmation
and successful mining of the transaction by existing validators, the user will see the
updated statistics with his/her voice, and the ballot will disappear from the unanswered
ballots filter.

Possible cheating

1. user can create ballot or vote with his/her own dummy key It is impossible, because
only a valid payout key can govern. It is checked on the contract side.

2. same user can vote for or against a notary twice It is restricted at the contract side.
3. user can vote after ballot's time has ended It is restricted at the contract side.
4. notary with counterfeit license can become a member of the network It is impossible in

practice, because any of the voters can check public information about every notary
before voting.

5. user can govern other notaries alone It is impossible, because the minimal amount of
voices for a ballot is equal to 3.

user can manage the time of a ballot Duration of a ballot is constant and equal to 48 hours.
It is set in the contract.

Summary & Acknowledgements

Summary

We believe that such networks with Proof of Authority consensus algorithms will be a trend
in public blockchains in the coming years. On-demand systems with trusted validators will
play a major role in creating specialized open networks based on Ethereum's protocol. Our
goal is to be a model for the generation of networks connected by inter-ledger protocols,
such as Polkadot and Cosmos.

Acknowledgments

We would like to express our gratitude to our mentors, advisors and to the many people in
the Ethereum community that have been so welcoming and generous with their knowledge.

We would also like to thank the organizers and community members that we’ve met at the
Silicon Valley and SF Ethereum Meetups including Roman Storm, Joseph Chow, Martin
Koppelmann, Grant Hummer, Tom Ding, Chris Peel, Jeff Flowers, and many others.

References

[^fn1]: Ethereum, A Next-Generation Smart Contract and Decentralized Appli1
[^fn2]: Announcing Kovan — A Stable Ethereum Public Testnet https://medium.c2
[^fn3]: Kovan proposal https://github.com/kovan-testnet/proposal 3
[^fn4]: Parity pushes new Ethereum testnet 'Kovan' after spam attacks http4
[^fn5]: Polkadot, a blockchain technology, a heterogeneous multi-chain. ht5
[^fn6]: The Keccak sponge function family https://keccak.team/keccak.noeke6
[^fn7]: Satoshi Nakamoto (2008). Bitcoin: A peer-to-peer electronic cash s7
[^fn8]: Public versus Private Blockchains Part 2: Permissionless Blockchai8
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt2-19
[^fn9]: The Issuance Model in Ethereum https://blog.ethereum.org/2014/04/110
[^fn10]: What is Ethereum's inflation rate? (how quickly will new ether be 11
[^fn11]: https://github.com/paritytech/parity/wiki/Aura 12

Appendix A: Code Samples

Ballots manager

pragma solidity ^0.4.14;1
2

import "./Utility.sol";3
import "./ValidatorsManager.sol";4

5
contract BallotsManager is ValidatorsManager {6
 /**7
 @notice Adds new Ballot8
 @param ballotID Ballot unique ID9
 @param owner Voting key of notary, who creates ballot10
 @param miningKey Mining key of notary, which is proposed to add or rem11
 @param affectedKey Mining/payout/voting key of notary, which is propos12
 @param affectedKeyType Type of affectedKey: 0 = mining key, 1 = voting 13
 @param addAction Flag: adding is true, removing is false14
 @param memo Ballot's memo15
 */16
 function addBallot(17
 uint ballotID,18
 address owner,19
 address miningKey,20
 address affectedKey,21
 uint affectedKeyType,22
 bool addAction,23
 string memo24
) {25
 assert(checkVotingKeyValidity(msg.sender));26
 assert(!(licensesIssued == licensesLimit && addAction));27
 assert(ballotsMapping[ballotID].createdAt <= 0);28
 if (affectedKeyType == 0) {//mining key29
 bool validatorIsAdded = false;30
 for (uint i = 0; i < validators.length; i++) {31
 assert(!(validators[i] == affectedKey && addAction)); //va32
 if (validators[i] == affectedKey) {33
 validatorIsAdded = true;34
 break;35
 }36
 }37
 for (uint j = 0; j < disabledValidators.length; j++) {38
 assert(disabledValidators[j] != affectedKey); //validator 39
 }40
 assert(!(!validatorIsAdded && !addAction)); // no such validat41
 } else if (affectedKeyType == 1) {//voting key42
 assert(!(checkVotingKeyValidity(affectedKey) && addAction)); /43
 assert(!(!checkVotingKeyValidity(affectedKey) && !addAction));44
 } else if (affectedKeyType == 2) {//payout key45

 assert(!(checkPayoutKeyValidity(affectedKey) && addAction)); /46
 assert(!(!checkPayoutKeyValidity(affectedKey) && !addAction));47
 }48
 uint votingStart = now;49
 ballotsMapping[ballotID] = Ballot({50
 owner: owner,51
 miningKey: miningKey,52
 affectedKey: affectedKey,53
 memo: memo, 54
 affectedKeyType: affectedKeyType,55
 createdAt: now,56
 votingStart: votingStart,57
 votingDeadline: votingStart + 48 * 60 minutes,58
 votesAmmount: 0,59
 result: 0,60
 addAction: addAction,61
 active: true62
 });63
 ballots.push(ballotID);64
 checkBallotsActivity();65
 }66

67
 /**68
 @notice Gets active ballots' ids69
 @return { "value" : "Array of active ballots ids" }70
 */71
 function getBallots() constant returns (uint[] value) {72
 return ballots;73
 }74

75
 /**76
 @notice Gets ballot's memo77
 @param ballotID Ballot unique ID78
 @return { "value" : "Ballot's memo" }79
 */80
 function getBallotMemo(uint ballotID) constant returns (string value) 81
 return ballotsMapping[ballotID].memo;82
 }83

84
 /**85
 @notice Gets ballot's action86
 @param ballotID Ballot unique ID87
 @return { "value" : "Ballot's action: adding is true, removing is fals88
 */89
 function getBallotAction(uint ballotID) constant returns (bool value) 90
 return ballotsMapping[ballotID].addAction;91
 }92

93
 /**94
 @notice Gets mining key of notary95
 @param ballotID Ballot unique ID96

 @return { "value" : "Notary's mining key" }97
 */98
 function getBallotMiningKey(uint ballotID) constant returns (address v99
 return ballotsMapping[ballotID].miningKey;100
 }101

102
 /**103
 @notice Gets affected key of ballot104
 @param ballotID Ballot unique ID105
 @return { "value" : "Ballot's affected key" }106
 */107
 function getBallotAffectedKey(uint ballotID) constant returns (address 108
 return ballotsMapping[ballotID].affectedKey;109
 }110

111
 /**112
 @notice Gets affected key type of ballot113
 @param ballotID Ballot unique ID114
 @return { "value" : "Ballot's affected key type" }115
 */116
 function getBallotAffectedKeyType(uint ballotID) constant returns (uin117
 return ballotsMapping[ballotID].affectedKeyType;118
 }119

120
 function toString(address x) internal returns (string) {121
 bytes memory b = new bytes(20);122
 for (uint i = 0; i < 20; i++)123
 b[i] = byte(uint8(uint(x) / (2**(8*(19 - i)))));124
 return string(b);125
 }126

127
 /**128
 @notice Gets ballot's owner full name129
 @param ballotID Ballot unique ID130
 @return { "value" : "Ballot's owner full name" }131
 */132
 function getBallotOwner(uint ballotID) constant returns (string value)133
 address ballotOwnerVotingKey = ballotsMapping[ballotID].owner;134
 address ballotOwnerMiningKey = votingMiningKeysPair[ballotOwnerVot135
 string storage validatorFullName = validator[ballotOwnerMiningKey]136
 bytes memory ownerName = bytes(validatorFullName);137
 if (ownerName.length == 0)138
 return toString(ballotOwnerMiningKey);139
 else140
 return validatorFullName;141
 }142

143
 /**144
 @notice Gets ballot's creation time145
 @param ballotID Ballot unique ID146
 @return { "value" : "Ballot's creation time" }147

 */148
 function ballotCreatedAt(uint ballotID) constant returns (uint value) 149
 return ballotsMapping[ballotID].createdAt;150
 }151

152
 /**153
 @notice Gets ballot's voting start date154
 @param ballotID Ballot unique ID155
 @return { "value" : "Ballot's voting start date" }156
 */157
 function getBallotVotingStart(uint ballotID) constant returns (uint va158
 return ballotsMapping[ballotID].votingStart;159
 }160

161
 /**162
 @notice Gets ballot's voting end date163
 @param ballotID Ballot unique ID164
 @return { "value" : "Ballot's voting end date" }165
 */166
 function getBallotVotingEnd(uint ballotID) constant returns (uint valu167
 return ballotsMapping[ballotID].votingDeadline;168
 }169

170
 /**171
 @notice Gets ballot's amount of votes for172
 @param ballotID Ballot unique ID173
 @return { "value" : "Ballot's amount of votes for" }174
 */175
 function getVotesFor(uint ballotID) constant returns (int value) {176
 return (ballotsMapping[ballotID].votesAmmount + ballotsMapping[bal177
 }178

179
 /**180
 @notice Gets ballot's amount of votes against181
 @param ballotID Ballot unique ID182
 @return { "value" : "Ballot's amount of votes against" }183
 */184
 function getVotesAgainst(uint ballotID) constant returns (int value) {185
 return (ballotsMapping[ballotID].votesAmmount - ballotsMapping[bal186
 }187

188
 /**189
 @notice Checks, if ballot is active190
 @param ballotID Ballot unique ID191
 @return { "value" : "Ballot's activity: active or not" }192
 */193
 function ballotIsActive(uint ballotID) constant returns (bool value) {194
 return ballotsMapping[ballotID].active;195
 }196

197
 /**198

 @notice Checks, if ballot is already voted by signer of current transa199
 @param ballotID Ballot unique ID200
 @return { "value" : "Ballot is already voted by signer of current tran201
 */202
 function ballotIsVoted(uint ballotID) constant returns (bool value) {203
 return ballotsMapping[ballotID].voted[msg.sender];204
 }205

206
 /**207
 @notice Votes208
 @param ballotID Ballot unique ID209
 @param accept Vote for is true, vote against is false210
 */211
 function vote(uint ballotID, bool accept) {212
 assert(checkVotingKeyValidity(msg.sender));213
 Ballot storage v = ballotsMapping[ballotID];214
 assert(v.votingDeadline >= now);215
 assert(!v.voted[msg.sender]);216
 v.voted[msg.sender] = true;217
 v.votesAmmount++;218
 if (accept) v.result++;219
 else v.result--;220
 checkBallotsActivity();221
 }222

223
 /**224
 @notice Removes element by index from validators array and shift eleme225
 @param index Element's index to remove226
 @return { "value" : "Updated validators array with removed element at 227
 */228
 function removeValidator(uint index) internal returns(address[]) {229
 if (index >= validators.length) return;230

231
 for (uint i = index; i<validators.length-1; i++){232
 validators[i] = validators[i+1];233
 }234
 delete validators[validators.length-1];235
 validators.length--;236
 }237

238
 /**239
 @notice Checks ballots' activity240
 @dev Deactivate ballots, if ballot's time is finished and implement ac241
 */242
 function checkBallotsActivity() internal {243
 for (uint ijk = 0; ijk < ballots.length; ijk++) {244
 Ballot storage b = ballotsMapping[ballots[ijk]];245
 if (b.votingDeadline < now && b.active) {246
 if ((int(b.votesAmmount) >= int(votingLowerLimit)) && b.re247
 if (b.addAction) { //add key248
 if (b.affectedKeyType == 0) {//mining key249

 if (licensesIssued < licensesLimit) {250
 licensesIssued++;251
 validators.push(b.affectedKey);252
 InitiateChange(Utility.getLastBlockHash(),253
 }254
 } else if (b.affectedKeyType == 1) {//voting key255
 votingKeys[b.affectedKey] = VotingKey({isActiv256
 votingMiningKeysPair[b.affectedKey] = b.mining257
 } else if (b.affectedKeyType == 2) {//payout key258
 payoutKeys[b.affectedKey] = PayoutKey({isActiv259
 miningPayoutKeysPair[b.miningKey] = b.affected260
 }261
 } else { //invalidate key262
 if (b.affectedKeyType == 0) {//mining key263
 for (uint jj = 0; jj < validators.length; jj++264
 if (validators[jj] == b.affectedKey) {265
 removeValidator(jj); 266
 return;267
 }268
 }269
 disabledValidators.push(b.affectedKey);270
 validator[b.affectedKey].disablingDate = now;271
 } else if (b.affectedKeyType == 1) {//voting key272
 votingKeys[b.affectedKey] = VotingKey({isActiv273
 } else if (b.affectedKeyType == 2) {//payout key274
 payoutKeys[b.affectedKey] = PayoutKey({isActiv275
 }276
 }277
 }278
 b.active = false;279
 }280
 }281
 }282
}283

Validators manager

pragma solidity ^0.4.14;1
2

import "oracles-contract-validator/ValidatorClass.sol";3
import "./KeysManager.sol";4

5
contract ValidatorsManager is ValidatorClass, KeysManager {6

7
 /**8
 @notice Adds new notary9
 @param miningKey Notary's mining key10
 @param zip Notary's zip code11
 @param licenseID Notary's license ID12
 @param licenseExpiredAt Notary's expiration date13
 @param fullName Notary's full name14
 @param streetName Notary's address15
 @param state Notary's US state full name16
 */17
 function addValidator(18
 address miningKey,19
 uint zip,20
 uint licenseID,21
 uint licenseExpiredAt,22
 string fullName,23
 string streetName,24
 string state25
) {26
 assert(!(!checkVotingKeyValidity(msg.sender) && !checkInitialKey(m27
 assert(licensesIssued < licensesLimit);28
 validator[miningKey] = Validator({29
 fullName: fullName, 30
 streetName: streetName, 31
 state: state, 32
 zip: zip, 33
 licenseID: licenseID, 34
 licenseExpiredAt: licenseExpiredAt, 35
 disablingDate: 0, 36
 disablingTX: ""37
 });38
 }39

40
 /**41
 @notice Gets active notaries mining keys42
 @return { "value" : "Array of active notaries mining keys" }43
 */44
 function getValidators() constant returns (address[] value) {45

 return validators;46
 }47

48
 /**49
 @notice Gets disabled notaries mining keys50
 @return { "value" : "Array of disabled notaries mining keys" }51
 */52
 function getDisabledValidators() constant returns (address[] value) {53
 return disabledValidators;54
 }55

56
 /**57
 @notice Gets notary's full name58
 @param addr Notary's mining key59
 @return { "value" : "Notary's full name" }60
 */61
 function getValidatorFullName(address addr) constant returns (string v62
 return validator[addr].fullName;63
 }64

65
 /**66
 @notice Gets notary's address67
 @param addr Notary's mining key68
 @return { "value" : "Notary's address" }69
 */70
 function getValidatorStreetName(address addr) constant returns (string 71
 return validator[addr].streetName;72
 }73

74
 /**75
 @notice Gets notary's state full name76
 @param addr Notary's mining key77
 @return { "value" : "Notary's state full name" }78
 */79
 function getValidatorState(address addr) constant returns (string valu80
 return validator[addr].state;81
 }82

83
 /**84
 @notice Gets notary's zip code85
 @param addr Notary's mining key86
 @return { "value" : "Notary's zip code" }87
 */88
 function getValidatorZip(address addr) constant returns (uint value) {89
 return validator[addr].zip;90
 }91

92
 /**93
 @notice Gets notary's license ID94
 @param addr Notary's mining key95
 @return { "value" : "Notary's license ID" }96

 */97
 function getValidatorLicenseID(address addr) constant returns (uint va98
 return validator[addr].licenseID;99
 }100

101
 /**102
 @notice Gets notary's license expiration date103
 @param addr Notary's mining key104
 @return { "value" : "Notary's license expiration date" }105
 */106
 function getValidatorLicenseExpiredAt(address addr) constant returns (107
 return validator[addr].licenseExpiredAt;108
 }109

110
 /**111
 @notice Gets notary's disabling date112
 @param addr Notary's mining key113
 @return { "value" : "Notary's disabling date" }114
 */115
 function getValidatorDisablingDate(address addr) constant returns (uin116
 return validator[addr].disablingDate;117
 }118
}119

Deployment scripts for the mining node

#!/bin/bash1
set -e2
set -u3
set -x4

5
EXT_IP="$(curl ifconfig.co)"6

7
Install logentries daemon /*8
start_logentries() {9
 echo "=====> start_logentries"10
 sudo bash -c "echo 'deb http://rep.logentries.com/ trusty main' > /etc11
 sudo bash -c "gpg --keyserver pgp.mit.edu --recv-keys C43C79AD && gpg 12
 sudo apt-get update13
 sudo apt-get install -y logentries14
 sudo le reinit --user-key=0665901a-e843-41c5-82c1-2cc4b39f0b21 --pull-15

16
 mkdir -p /home/${ADMIN_USERNAME}/logs17
 touch /home/${ADMIN_USERNAME}/logs/netstats_daemon.err18
 touch /home/${ADMIN_USERNAME}/logs/netstats_daemon.out19
 touch /home/${ADMIN_USERNAME}/logs/parity.err20
 touch /home/${ADMIN_USERNAME}/logs/parity.out21
 touch /home/${ADMIN_USERNAME}/logs/parity.log22
 touch /home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.out23
 touch /home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.err24

25
 sudo bash -c "cat >> /etc/le/config << EOF26
[install_err]27
path = /var/lib/waagent/custom-script/download/0/stderr28
destination = AlphaTestTestNet/${EXT_IP}29
[install_out]30
path = /var/lib/waagent/custom-script/download/0/stdout31
destination = AlphaTestTestNet/${EXT_IP}32
[netstats_daemon_err]33
path = /home/${ADMIN_USERNAME}/logs/netstats_daemon.err34
destination = AlphaTestTestNet/${EXT_IP}35
[netstats_daemon_out]36
path = /home/${ADMIN_USERNAME}/logs/netstats_daemon.out37
destination = AlphaTestTestNet/${EXT_IP}38
[parity_err]39
path = /home/${ADMIN_USERNAME}/logs/parity.err40
destination = AlphaTestTestNet/${EXT_IP}41
[parity_out]42
path = /home/${ADMIN_USERNAME}/logs/parity.out43
destination = AlphaTestTestNet/${EXT_IP}44
[parity_log]45

path = /home/${ADMIN_USERNAME}/logs/parity.log46
destination = AlphaTestTestNet/${EXT_IP}47
[transferReward_out]48
path = /home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.out49
destination = AlphaTestTestNet/${EXT_IP}50
[transferReward_err]51
path = /home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.err52
destination = AlphaTestTestNet/${EXT_IP}53
EOF"54
 sudo apt-get install -y logentries-daemon55
 sudo service logentries start56
 echo "<===== start_logentries"57
}58

59
start_logentries60

61
*/62

63
echo "========== AlphaTestTestNet/mining-node/install.sh starting ========64
echo "===== current time: $(date)"65
echo "===== username: $(whoami)"66
echo "===== working directory: $(pwd)"67
echo "===== operating system info:"68
lsb_release -a69
echo "===== memory usage info:"70
free -m71
echo "===== external ip: ${EXT_IP}"72
echo "===== environmental variables:"73
printenv74

75
script parameters76
#INSTALL_DOCKER_VERSION="17.03.1~ce-0~ubuntu-xenial"77
#INSTALL_DOCKER_IMAGE="parity/parity:v1.6.8"78
INSTALL_CONFIG_REPO="https://raw.githubusercontent.com/poanetwork/test-tem79
GENESIS_REPO_LOC="https://raw.githubusercontent.com/poanetwork/oracles-scr80
GENESIS_JSON="spec.json"81
NODE_TOML="node.toml"82
NODE_PWD="node.pwd"83

84
export HOME="${HOME:-/home/${ADMIN_USERNAME}}"85

86
#echo "===== will use docker version: ${INSTALL_DOCKER_VERSION}"87
#echo "===== will use parity docker image: ${INSTALL_DOCKER_IMAGE}"88
echo "===== repo base path: ${INSTALL_CONFIG_REPO}"89

90
this should be provided through env by azure template91
NETSTATS_SERVER="${NETSTATS_SERVER}"92
NETSTATS_SECRET="${NETSTATS_SECRET}"93
MINING_KEYFILE="${MINING_KEYFILE}"94
MINING_ADDRESS="${MINING_ADDRESS}"95
MINING_KEYPASS="${MINING_KEYPASS}"96

NODE_FULLNAME="${NODE_FULLNAME:-Anonymous}"97
NODE_ADMIN_EMAIL="${NODE_ADMIN_EMAIL:-somebody@somehere}"98
ADMIN_USERNAME="${ADMIN_USERNAME}"99

100
prepare_homedir() {101
 echo "=====> prepare_homedir"102
 #ln -s "$(pwd)" "/home/${ADMIN_USERNAME}/script-dir"103
 cd "/home/${ADMIN_USERNAME}"104
 mkdir -p logs105
 mkdir -p logs/old106
 echo "<===== prepare_homedir"107
}108

109
add_user_to_docker_group() {110
 # based on https://askubuntu.com/questions/477551/how-can-i-use-docker111
 echo "=====> add_user_to_docker_group"112
 sudo groupadd docker113
 sudo gpasswd -a "${ADMIN_USERNAME}" docker114
 newgrp docker115
 echo "===== Groups: "116
 groups117
 echo "<===== add_user_to_docker_group"118
}119

120
install_ntpd() {121
 echo "=====> install_ntpd"122
 sudo timedatectl set-ntp no123
 sudo apt-get -y install ntp124

125
 sudo bash -c "cat > /etc/cron.hourly/ntpdate << EOF126
#!/bin/sh127
sudo service ntp stop128
sudo ntpdate -s ntp.ubuntu.com129
sudo service ntp start130
EOF"131
 sudo chmod 755 /etc/cron.hourly/ntpdate132
 echo "<===== install_ntpd"133
}134

135
install_haveged() {136
 echo "=====> install_haveged"137
 sudo apt-get -y install haveged138
 sudo update-rc.d haveged defaults139
 echo "<===== install_haveged"140
}141

142
allocate_swap() {143
 echo "=====> allocate_swap"144
 sudo apt-get -y install bc145
 #sudo fallocate -l $(echo "$(free -b | awk '/Mem/{ print $2 }')*2" | 146
 sudo fallocate -l 1G /swapfile147

 sudo chmod 600 /swapfile148
 sudo mkswap /swapfile149
 sudo swapon /swapfile150
 sudo sh -c "printf '/swapfile none swap sw 0 0\n' >> /etc151
 sudo sh -c "printf 'vm.swappiness=10\n' >> /etc/sysctl.conf"152
 sudo sysctl vm.vfs_cache_pressure=50153
 sudo sh -c "printf 'vm.vfs_cache_pressure = 50\n' >> /etc/sysctl.conf"154
 echo "<===== allocate_swap"155
}156

157
install_nodejs() {158
 echo "=====> install_nodejs"159
 # curl -sL https://deb.nodesource.com/setup_0.12 | bash -160
 curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -161
 sudo apt-get update162
 sudo apt-get install -y build-essential git unzip wget nodejs ntp clou163

164
 # add symlink if it doesn't exist165
 [[! -f /usr/bin/node]] && sudo ln -s /usr/bin/nodejs /usr/bin/node166
 echo "<===== install_nodejs"167
}168

169
install_docker_ce() {170
 echo "=====> install_docker_ce"171
 sudo apt-get -y install apt-transport-https ca-certificates curl softw172
 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key 173
 sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/174
 sudo apt-get update175
 sudo apt-get -y install docker-ce=${INSTALL_DOCKER_VERSION}176
 sudo docker pull ${INSTALL_DOCKER_IMAGE}177
 echo "<===== install_docker_ce"178
}179

180
pull_image_and_configs() {181
 echo "=====> pull_image_and_configs"182

183
 # curl -s -O "${INSTALL_CONFIG_REPO}/../${GENESIS_JSON}"184
 curl -s -o "${GENESIS_JSON}" "${GENESIS_REPO_LOC}"185
 curl -s -O "${INSTALL_CONFIG_REPO}/${NODE_TOML}"186
 sed -i "/\[network\]/a nat=\"extip:${EXT_IP}\"" ${NODE_TOML}187
 cat >> ${NODE_TOML} <<EOF188
[misc]189
logging="engine=trace,network=trace,discovery=trace"190
log_file = "/home/${ADMIN_USERNAME}/logs/parity.log"191
[account]192
password = ["${NODE_PWD}"]193
unlock = ["${MINING_ADDRESS}"]194
[mining]195
force_sealing = true196
engine_signer = "${MINING_ADDRESS}"197
reseal_on_txs = "none"198

EOF199
 echo "${MINING_KEYPASS}" > "${NODE_PWD}"200
 mkdir -p parity/keys/OraclesPoA201
 echo ${MINING_KEYFILE} | base64 -d > parity/keys/OraclesPoA/mining.key202
 echo "<===== pull_image_and_configs"203
}204

205
based on https://get.parity.io206
install_netstats() {207
 echo "=====> install_netstats"208
 git clone https://github.com/poanetwork/eth-net-intelligence-api209
 cd eth-net-intelligence-api210
 #sed -i '/"web3"/c "web3": "0.19.x",' package.json211
 npm install212
 sudo npm install pm2 -g213

214
 cat > app.json << EOL215
[216
 {217
 "name" : "netstats_daemon",218
 "script" : "app.js",219
 "log_date_format" : "YYYY-MM-DD HH:mm:SS Z",220
 "error_file" : "/home/${ADMIN_USERNAME}/logs/netstats_da221
 "out_file" : "/home/${ADMIN_USERNAME}/logs/netstats_da222
 "merge_logs" : false,223
 "watch" : false,224
 "max_restarts" : 100,225
 "exec_interpreter" : "node",226
 "exec_mode" : "fork_mode",227
 "env":228
 {229
 "NODE_ENV" : "production",230
 "RPC_HOST" : "localhost",231
 "RPC_PORT" : "8545",232
 "LISTENING_PORT" : "30300",233
 "INSTANCE_NAME" : "${NODE_FULLNAME}",234
 "CONTACT_DETAILS" : "${NODE_ADMIN_EMAIL}",235
 "WS_SERVER" : "http://${NETSTATS_SERVER}:3000",236
 "WS_SECRET" : "${NETSTATS_SECRET}",237
 "VERBOSITY" : 2238
 }239
 }240
]241
EOL242
 cd ..243
 cat > netstats.start <<EOF244
cd eth-net-intelligence-api245
pm2 startOrRestart app.json246
cd ..247
EOF248
 chmod +x netstats.start249

 sudo -u root -E -H ./netstats.start250
 echo "<===== install_netstats"251
}252

253
install_netstats_via_systemd() {254
 echo "=====> install_netstats_via_systemd"255
 git clone https://github.com/poanetwork/eth-net-intelligence-api256
 cd eth-net-intelligence-api257
 #sed -i '/"web3"/c "web3": "0.19.x",' package.json258
 npm install259
 sudo npm install pm2 -g260

261
 cat > app.json << EOL262
[263
 {264
 "name" : "netstats_daemon",265
 "script" : "app.js",266
 "log_date_format" : "YYYY-MM-DD HH:mm:SS Z",267
 "error_file" : "/home/${ADMIN_USERNAME}/logs/netstats_da268
 "out_file" : "/home/${ADMIN_USERNAME}/logs/netstats_da269
 "merge_logs" : false,270
 "watch" : false,271
 "max_restarts" : 100,272
 "exec_interpreter" : "node",273
 "exec_mode" : "fork_mode",274
 "env":275
 {276
 "NODE_ENV" : "production",277
 "RPC_HOST" : "localhost",278
 "RPC_PORT" : "8545",279
 "LISTENING_PORT" : "30300",280
 "INSTANCE_NAME" : "${NODE_FULLNAME}",281
 "CONTACT_DETAILS" : "${NODE_ADMIN_EMAIL}",282
 "WS_SERVER" : "http://${NETSTATS_SERVER}:3000",283
 "WS_SECRET" : "${NETSTATS_SECRET}",284
 "VERBOSITY" : 2285
 }286
 }287
]288
EOL289
 cd ..290
 sudo bash -c "cat > /etc/systemd/system/oracles-netstats.service <<EOF291
[Unit]292
Description=oracles netstats service293
After=network.target294
[Service]295
Type=oneshot296
RemainAfterExit=true297
User=${ADMIN_USERNAME}298
Group=${ADMIN_USERNAME}299
Environment=MYVAR=myval300

WorkingDirectory=/home/${ADMIN_USERNAME}/eth-net-intelligence-api301
ExecStart=/usr/bin/pm2 startOrRestart app.json302
[Install]303
WantedBy=multi-user.target304
EOF"305
 sudo systemctl enable oracles-netstats306
 sudo systemctl start oracles-netstats307
 echo "<===== install_netstats_via_systemd"308
}309

310
start_docker() {311
 echo "=====> start_docker"312
 cat > docker.start <<EOF313
sudo docker run -d \\314
 --name oracles-poa \\315
 -p 30300:30300 \\316
 -p 30300:30300/udp \\317
 -p 8080:8080 \\318
 -p 8180:8180 \\319
 -p 8545:8545 \\320
 -v "$(pwd)/${NODE_PWD}:/build/${NODE_PWD}" \\321
 -v "$(pwd)/parity:/build/parity" \\322
 -v "$(pwd)/${GENESIS_JSON}:/build/${GENESIS_JSON}" \\323
 -v "$(pwd)/${NODE_TOML}:/build/${NODE_TOML}" \\324
 ${INSTALL_DOCKER_IMAGE} --config "${NODE_TOML}" > logs/docker.out 2> l325
container_id="\$(cat logs/docker.out)"326
sudo ln -sf "/var/lib/docker/containers/\${container_id}/\${container_id}-327
EOF328
 chmod +x docker.start329
 ./docker.start330
 echo "<===== start_docker"331
}332

333
use_deb() {334
 echo "=====> use_deb"335
 curl -LO 'http://parity-downloads-mirror.parity.io/v1.7.0/x86_64-unkno336
 sudo dpkg -i parity_1.7.0_amd64.deb337
 sudo apt-get install dtach338

339
 cat > parity.start << EOF340
dtach -n parity.dtach bash -c "parity -l engine=trace,discovery=trace,netw341
EOF342
 chmod +x parity.start343
 ./parity.start344
 echo "<===== use_deb"345
}346

347
use_deb_via_systemd() {348
 echo "=====> use_deb_via_systemd"349
 curl -LO 'http://parity-downloads-mirror.parity.io/v1.7.0/x86_64-unkno350
 sudo dpkg -i parity_1.7.0_amd64.deb351

352
 sudo bash -c "cat > /etc/systemd/system/oracles-parity.service <<EOF353
[Unit]354
Description=oracles parity service355
After=network.target356
[Service]357
User=${ADMIN_USERNAME}358
Group=${ADMIN_USERNAME}359
WorkingDirectory=/home/${ADMIN_USERNAME}360
ExecStart=/usr/bin/parity --config=node.toml361
Restart=always362
[Install]363
WantedBy=multi-user.target364
EOF"365
 sudo systemctl enable oracles-parity366
 sudo systemctl start oracles-parity367
 echo "<===== use_deb_via_systemd"368
}369

370
use_bin() {371
 echo "=====> use_bin"372
 sudo apt-get install -y dtach unzip373
 curl -L -o parity-bin-v1.7.0.zip 'https://gitlab.parity.io/parity/pari374
 unzip parity-bin-v1.7.0.zip -d parity-bin-v1.7.0375
 ln -s parity-bin-v1.7.0/target/release/parity parity-v1.7.0376

377
 cat > parity.start << EOF378
dtach -n parity.dtach bash -c "./parity-v1.7.0 -l discovery=trace,network=379
EOF380
 chmod +x parity.start381
 ./parity.start 382
 echo "<===== use_bin"383
}384

385
compile_source() {386
 echo "=====> compile_source"387
 sudo apt-get -y install gcc g++ libssl-dev libudev-dev pkg-config388
 curl https://sh.rustup.rs -sSf | sh -s -- -y389
 source "/home/${ADMIN_USERNAME}/.cargo/env"390
 rustc --version391
 cargo --version392

393
 git clone -b "v1.7.0" https://github.com/paritytech/parity parity-src-394
 cd parity-src-v1.7.0395
 cargo build --release396
 cd ..397
 ln -s parity-src-v1.7.0/target/release/parity parity-v1.7.0398

399
 cat > parity.start << EOF400
./parity-v1.7.0 -l discovery=trace,network=trace --config "${NODE_TOML}" >401
EOF402

 chmod +x parity.start403
 dtach -n parity.dtach "./parity.start"404
 echo "<===== compile_source"405
}406

407
install_scripts() {408
 echo "=====> install_scripts"409
 git clone -b alphadevtestnet --single-branch https://github.com/poanet410
 ln -s ../node.toml oracles-scripts/node.toml411
 cd oracles-scripts/scripts412
 npm install413
 sudo bash -c "cat > /etc/cron.daily/transferRewardToPayoutKey <<EOF414

415
#!/bin/bash416
cd "$(pwd)"417
echo \"Starting at \\\$(date)\" >> \"/home/${ADMIN_USERNAME}/logs/transfer418
echo \"Starting at \\\$(date)\" >> \"/home/${ADMIN_USERNAME}/logs/transfer419
node transferRewardToPayoutKey.js >> \"/home/${ADMIN_USERNAME}/logs/transf420
echo \"\" >> \"/home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.out\421
echo \"\" >> \"/home/${ADMIN_USERNAME}/logs/transferRewardToPayoutKey.err\422
EOF"423
 sudo chmod 755 /etc/cron.daily/transferRewardToPayoutKey424
 cd ../..425
 echo "<===== install_scripts"426
}427

428
setup_autoupdate() {429
 echo "=====> setup_autoupdate"430
 sudo docker pull poanetwork/docker-run431
 sudo bash -c "cat > /etc/cron.daily/docker-autoupdate << EOF432
#!/bin/sh433
outlog='/home/${ADMIN_USERNAME}/logs/docker-autoupdate.out'434
errlog='/home/${ADMIN_USERNAME}/logs/docker-autoupdate.err'435
echo \"Starting: \\\$(date)\" >> \"\\\${outlog}\"436
echo \"Starting: \\\$(date)\" >> \"\\\${errlog}\"437
sudo docker run --rm -v /var/run/docker.sock:/tmp/docker.sock poanetwork/d438
echo \"\" >> \"\\\${outlog}\"439
echo \"\" >> \"\\\${errlog}\"440
EOF"441
 sudo chmod 755 /etc/cron.daily/docker-autoupdate442
 echo "<===== setup_autoupdate"443
}444

445
configure_logrotate() {446
 echo "=====> configure_logrotate"447

448
 sudo bash -c "cat > /etc/logrotate.d/oracles.conf << EOF449
/home/${ADMIN_USERNAME}/logs/*.log {450
 rotate 10451
 size 200M452
 missingok453

 compress454
 copytruncate455
 dateext456
 dateformat %Y-%m-%d-%s457
 olddir old458
}459
/home/${ADMIN_USERNAME}/.pm2/pm2.log {460
 su ${ADMIN_USERNAME} ${ADMIN_USERNAME}461
 rotate 10462
 size 200M463
 missingok464
 compress465
 copytruncate466
 dateext467
 dateformat %Y-%m-%d-%s468
}"469
 echo "<===== configure_logrotate"470
}471

472
MAIN473
main () {474
 sudo apt-get update475

476
 prepare_homedir477
 #add_user_to_docker_group478

479
 install_ntpd480
 install_haveged481
 allocate_swap482

483
 install_nodejs484
 #install_docker_ce485
 pull_image_and_configs486

487
 #start_docker488
 #use_deb489
 use_deb_via_systemd490
 #use_bin491

492
 #setup_autoupdate493

494
 #install_netstats495
 install_netstats_via_systemd496
 install_scripts497
 configure_logrotate498
}499

500
main501
echo "========== AlphaTestTestNet/mining-node/install.sh finished ========502

