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Abstract 
As the world transforms to a tokenized economy, there is a need for an efficient scalable protocol for typical web, enterprise, and 
IoT applications.  0chain provides a zero-cost, fast finality, infinitely scalable blockchain for web and IoT applications, essentially 
providing a zero-cost decentralized cloud.  0chain  enables current dApps to move their off-chain code and data onto our 2

decentralized compute and storage platform.  Its self-forking feature enables different verticals and applications to fine-tune their 
needs create separate chains without worrying about the integrity of the blockchain. Unlike a traditional cloud subscription 
model, dApps need to lock 0chain tokens  to use the blockchain, more like a bank CD for a free scalable cloud, and as more 3

applications use our network, 0chain will grow in its intrinsic value and integrity. 

1 Motivation 
1.1 Scaling issue 
Conventional blockchain technology does not scale and has a high economic cost of consensus, which makes it difficult to use for 
IoT devices and micro-transactions.  IoT devices and micro-transactions typically send a lot of data and so, cumulative costs for 
such transactions would be too high for a business to be able to use such data. Take for example the fees to transfer Bitcoin is on 
average $2.25 per transaction and with Ethereum around $0.41 .  This may be fine for high value transactions, but for a single 4

IoT device transmitting every minute, it would cost $215k annually on Ethereum, unless we register most of transactions off-
chain and record periodically some values on the blockchain. Additionally, the number of transactions per second that can be 
executed for Bitcoin   is about 3 and Ethereum  is between 5 to 15, far short of what we need.  Consider an IoT application, 5 6

which has an installation of 6M sensors, each transmitting every minute; we need a blockchain that can accommodate at least 
100k transactions per second, something that none of the current blockchains support today. 

1.2 Energy waste  
Traditional blockchain technology such as Bitcoin  and its derivatives use work-oriented schemes (proof-of-work) to build 7

consensus and advance a block. This scheme wastes energy resources, and needs specialized computing power. Indeed the 
hashing power requirement is so large today that only a few pools mine the bulk of the blocks.  This practical economic effect 
runs against the original purpose of decentralization.   

1.3 Resource scaling issue 
A more recent blockchain technology, Ethereum , has incorporated scripts within transactions and use compute, memory, storage, 8

and bandwidth resources.  While the flexibility of a Turing complete smart contract enables new applications, it complicates the 
mining process and puts a strain on the resources.  This led to charging fees (gas) to force contract developers to restrict contract 
compute and storage capability.  Hence, most of the applications today have computations architected to be off-chain because on-
chain computations are too slow and expensive.  Depending on the implementation of the code, the gas cost varies from $0.05 to 
$3, and is also tied to the value of Ether .  As Ether token value appreciates, the gas cost increases.  Indeed, for just one IoT 9

device, the gas cost could easily be $215k annually depending on the number of smart contracts being used to convert raw data to 
calibrated visual and analytic sets. In our opinion, the only way to speed up Ethereum is to have sidechains or off-chain 
transactions which occasionally pegs back to the main chain.  While this may be a band-aid for current transactions, we think it 
will be very difficult for any IoT or web application to work in this scenario.  In the future, Ethereum is expected to adopt Proof-
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of-Stake, which should alleviate scaling problems, but Casper  or Plasma  have a complicated design and economic incentives 10 11

of a hybrid Proof-of-Stake and Proof-of-Work protocol with fraud proofs between the two chains. 

1.4 Forking issue 
Several prominent blockchains (Bitcoin, Ethereum) have gone through the forking process and this period is destabilizing 
because of uncertainties  over the integrity of the forked chain, miner economic incentives, and user demand.  Forks happen 12

because of the need to change the code that cannot be done with a minor upgrade, and is necessary to meet certain application 
requirements that were not thought of in the initial design.  An additional reason for a fork is to reverse a malicious transaction 
that has taken place because of an implementation flaw (DAO ).  Bitcoin and Bitcoin Cash  went through a volatile period after 13 14

a hard fork event, where the latter’s token value fluctuated between $400 and $1000 within a day. 

1.5 Inflation & Volatility 
Both Bitcoin and Ethereum have a very high inflation rate of mining, although it does reduce over time. Bitcoin started out with 
100% before settling to its current 4% inflation rate.  Ethereum’s current inflation rate is about 14% but is expected to reduce 
after a hard fork in future. Even then, there is too much reward going toward the miners — in fact, Bitcoin miners have earned $2 
billion since its inception .  This miner economy is not efficient and would hamper growth of truly decentralized applications, 15

that desire a protocol with a fair computing and consensus price and use of less energy resources. Both Bitcoin and Ethereum 
have a very high volatility history.  Bitcoin lost 30% of its value within 48 hours of Jamie Dimon’s  comments, and Ethereum 16

lost 20% after fake news surfaced on Vitalik’s  car crash.  Our protocol grows its intrinsic value as the utility of the applications 17

on our network increases over time as detailed in Section 7.5. 

2 Multi-Dimensional Blockchain 
2.1 Multiple Dimensions 
We propose a novel blockchain that solves the problem of cost, scalability, fork instabilities, and high inflation.  Our blockchain 
is an n-dimensional architecture with multiple chains based on different forkable parameters detailed later in Section 3, with 
incentives for consensus, computing, and storage entities, miners, sharders, blobbers, to scale the blockchain with a high level of 
integrity and security.  See Fig. 1. The miners generate and validate a block, sharders store the blocks, and blobbers store 
unstructured data. With multiple chains under one native token, we expect to enable multiple verticals to be satisfied with 
forkable parameters, without the need for a new blockchain. The sharders help reduce compute, memory, storage, and bandwidth 
requirements of the underlying hardware implementation, and allow for fast indexing and access of data and code.  Note that the 
definition of sharding here is different from that described in Ethereum, where sharding implies different consensus sets.  In our 
case, sharding is defined as splitting the chain for manageable storage and access, and is decoupled from consensus. The blobbers 
help reduce the cost and complexity of storing content for web and IoT applications.  The purpose of having multiple blockchains 
is for a single protocol to be applicable for various verticals, and to decouple the value of the underlying token with its utility for 
mining, sharding, and blobbing activities.  

Fig 1. n-Dimensional protocol scalability with chains, miners, shards, and blobs 
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2.2 Code and Data Chains 
There are protocols today that have the concept of sidechains  for better speed and scalability.  In the case of Blockstream, the 18

sidechains are pegged to the Bitcoin network, and so merged-mining can be used for verification of the blocks on the sidechains 
to prevent hash attacks on a new set of miners. In a similar vein, Plasma.io's concept is expected to enable micro-transactions on 
its off-chain and periodically use fraud proofs to peg the states back to the Ethereum network.  These changes to the legacy 
Bitcoin and Ethereum may help patch up scalability of transactions but seem too complex, unstructured, and expensive for a web 
application that needs to scale deterministically at a low cost.  As shown in Fig. 2, we expect to have two forked blockchains 
from the genesis block on the 0chain network.  The purpose of having two chains at the very onset of the network is to separate 
the transactions into stateful and stateless buckets.  The separation is easier for development as it would then conform to the 
MVC (Model-View-Controller) architecture that is used by most enterprise grade applications, where model represents data or 
the database, the controller embody methods that work with data and change states, and the view typifies visualization of the data 
by the client. The data-code separation places different memory requirement for the miner’s infrastructure.  A stateful chain 
would need all the states to be in memory to facilitate changes to its states. A stateless chain can be placed in SSD or Disk 
depending on the frequency of access. There is hardly any memory requirement to process a data transaction, as there is no need 
to know the previous state.   

An IoT data set, Oracles (real events represented on the blockchain), or published content are examples of ‘stateless’ data that has 
no memory or coding requirement for such a transaction.  The transactions can be processed much faster and be kept in SSD or 
disk after the block is mined.  And so, a block time for such a chain can be set to be a shorter time compared to a ‘stateful’ chain.  
The miner incentives for a data chain is expected to be less than the code chain because the infrastructure cost would be much 
less. 

Fig 2 Dual-chain blockchain protocol 

A micro-transaction, such as paying for coffee, or a bunch of micro-services, that converts raw IoT data to calibrated data, or to 
different datasets such as hourly and day data averages, are examples of ‘stateful’ code, that needs states, and the code needs to be 
loaded in memory for faster execution.  For a large enterprise application, which may have 1000s of micro-service calls, it makes 
sense to have all the states and byte-code in memory to achieve a result faster than if it were constrained by disk I/O of SSDs.  
One can conceivably use a larger block time for a code chain for applications that require larger processing time to generate an 
output.   

  
2.3 Self-forking Multiple Chains 
Fig 3 further depicts the self-forked chain dimension of the blockchain.  The self-forking process could involve majority of 
stakeholder votes to allow for a fork proposal, or be automated through a configure-and-click interface if the user can lock up 
sufficient tokens. After such a fork has been established, an initial set of miners are chosen for the future chain.  For a transaction 
to be sent to this chain, an easy implementation would be to address the transaction to a specific chain address.  If there is no 
address, the transaction would default to the genesis chain (which is a code chain).  Miners on each chain ignore transactions 
from their buffer queue that are not addressed to them.  Depending on whether the data or code is sent to a code or data chain, the 
miner will treat it as such.  So, a byte code sent to a data chain will be treated as just a piece of data, while if sent to the code 
chain, it will be executed as code. 

 https://blockstream.com/strong-federations.pdf18
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Fig. 3 Self-forking chain 

2.4 Miner MxN dimension 
Fig. 4 shows the miner dimension of the blockchain in a typical DPoS  (delegated proof-of-stake) configuration, where M 19

miners are delegated by stakeholders through a voting process.  As is typical in a DPoS scheme, one miner produces a block 
while others verify the block.  In order to make the consensus deterministic, instead of probabilistic (Bitcoin, Ethereum, others) 
we looked at several algorithms such as PBFT  and Paxos  to address this Byzantine problem.  We have drawn inspiration from 20 21

Paxos and DPoS schemes, and have innovated around the ability to produce a deterministic consensus within a round of 
generating a block to be able to confirm it, and have the fastest finality compared to all the blockchains, where a round is defined 
as the progression of the block through a set of time slots.  The miners are then shuffled in a random order by a scheme detailed 
later in the paper.  In our innovative scheme, we add an additional group of miners that back up the M set of primary miners and 
form a MxN set where M are the designated primary miners and N are the secondary miners. The purpose of the backup miners is 
to prevent malicious transactions, DDoS attacks, withholding and censorship by primary miners.  Additionally, if the primary 
miner is offline or has an unusually high latency, backup miners would be able to advance a block to the network.  Out of the N 
blocks generated during the block production slot, only one is selected and verified and this process will be detailed in a 
subsequent white paper.  Typically, the N set would be a small set, otherwise it would be similar to proof-of-work where all the 
miners are generating blocks.  This architecture results in a dynamic decentralization contrary to traditional static decentralization 
on Ethereum, Bitcoin, and others.  In this scenario, as our bench miner pool grows we don't need a big miner set, because the 
probability of an attack dwindles without the need to engage a large miner set. We have coined the name 2D-BPoS (two 
dimensional Byzantine proof-of-stake) for our protocol as the 2D aspect adds a layer of speed and security, with a Byzantine 
condition placed on a regular delegated proof-of-stake protocol. 

If the set of miners is kept small, then the clients can conduct a fast and easy validation of the last b blocks produced to determine 
if a transaction has been processed. SPV (simple payment validation), sometimes referred to as a light client validation can be 
easily done by syncing with one of the miner nodes, compared to proof-of-work or naïve proof-of-stake. In the latter case all the 
nodes are producing blocks and uncles and there is no way to verify that the node is malicious and has the finalized blocks, other 
than conducting a proper Merkle validation at the light client or completely syncing with the node. The way it is done now for 
Ethereum is to download the block headers and use a distributed hash table for trie nodes to verify a transaction, account balance, 
validate a block, or monitor an event. In our MxN set, only a few miners exist and so by connecting to the miners, the client can 
sync up much faster to a node, and once the client establishes the node to be honest, then it can query the node for specific 
transactions, account balance, validate a block, or monitor an event.  To prove an honest node, one needs to verify the signatures 
of the mined blocks, or one can compare the Block Hash of the latest blocks from the M miners and determine if they are 
consistent.  

 https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md19
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Fig. 4 Miner dimension of the blockchain consisting of primary, secondary, and bench miners 
2.5 Shuffling scheme 
The shuffling of the MxN set is critical as it determines the proper decentralization process, otherwise attackers can hone in on 
one miner or be that miner that generates the random seed.  The idea of generating a random seed is inspired by the method 
proposed by Tezos . Each MxN miner generates a hash of a random number in one cycle and post it on the data chain, and in the 22

next cycle the miners reveal their random numbers, and then the resulting seed is generated from the combined random numbers 
of the miners, and is used to deterministically map to a MxN set, such that at least one member of the MxN set is dropped in 
favor of another from the W bench set.  In the next cycle, the miners use the random seed to determine if they are on the active 
set, and if they are in the primary or secondary category.  In this way, apriori knowledge of miner status is avoided to prevent 
focused attack on a specific miner. The whole process of generating a shuffled MxN set with a new member from the bench is 
recorded and can be verified by anyone. Lets consider some malicious attack scenarios.   

Selfish Mining — if a miner wants to stay on the MxN set for selfish mining, the miner needs to be either lucky or 
collude with all the miners since it is impossible to have the same hash if one miner does not collaborate.  This prevents 
the miner from selecting itself in the primary spot or from exiting the MxN set.   

Bad Transaction (e.g. Double Spend) — for this to happen, the miner needs to be lucky to collude with or be Sybil of n/
(2n+1) other miners, where n is the total number of miners in the active set. So for 3 primary, 6 secondaries, and 6 bench 
miners, a successful attack needs at least 5/9 majority to conduct a successful attack, but the probability of such an 
attack is dependent on miner selection from the bench set and is about 4.2%.  With more bench miners, the probability 
decreases even further.  This is a pretty good scenario relative to Bitcoin and Ethereum, where with a 51% control you 
can conduct an attack at any time. 

2.6 Verification scheme 
When a primary miner is engaged in producing a block, the other miners are busy validating the previous blocks. The miners in 
the MxN set get rewarded tokens over a period.  The rewards are based on miner’s bid price and the miner selection protocol 
would be based on the reputation score of a miner.  A miner needs to meet the minimum computing requirement to be a part of 
the mining pool.  Miners needs to stake tokens over the course of a period, and they cannot make a withdrawal from their 
account. 

2.7 Sharding dimension PxS 
As the chain gets substantially bigger, the miners will need to add memory or storage or both, depending on the chain they are 
working on.  To speed up data access and reduce memory and/or storage requirements, the chain is sharded after it reaches a 
certain size.  See Fig. 5.  Thus, there will be multiple shards and with a good indexing scheme, access for data and code would be 
much faster.  The shards are either kept in memory as for a code chain, or in SSDs if it is storing just data.  The shards will have a 
replica set so that if the primary shard is offline or fails or is a fraud entity, then the secondary (replicated) ones can provide the 
relevant data or code.  Miners communicate with Sharders to complete transactions.  Sharders are expected to have similar 
processing, bandwidth, and memory to keep processes balanced and maintain a fast operation most of the time.  

 https://www.tezos.com/static/papers/white_paper.pdf22
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Fig 5. Sharding dimension of the blockchain consisting of primary, secondary, and bench sharders 

In an enterprise application, it is conceivable that multiple calls are placed from the code chain to an older sharded code chain for 
older smart contracts, which gets executed in those shards or a single shard spawning multiple processes, and the results sent 
back to the current code, and is subsequently published in the current data chain.  So, the infrastructure requirement of a miner is 
a bit different from a sharder.  Sharders do not need as much computing power, even in the case of code sharders, since they are 
not doing any hashing or verification activities.  The method calls between the miner and the relevant shard(s) is through a 
secured API call.  The expectation is that sharders will have good connectivity on the network to minimize latency.   The 
sharders, like miners, collect tokens after each n cycles and need to stake tokens over a period of time.   

Lets consider some attack scenarios.  A sharder can cheat in several ways. It can pretend to be several active sharders (Sybil 
attack) where it pretends to shard even though it does not hold any data or code, and hope that it does not get caught by a miner’s 
call during the period it is serving as a sharder.  A sharder can outsource its sharding activity in the sense that if a miner calls a 
particular block, it just relays the call to another shard.  To prevent these two attacks, we force the miner to randomly choose a 
sharder for old contract calls.  This randomness can be deduced from a different mapping function, but the input is derived earlier 
from the same random seed.  

Now there is a possibility where a miner is colluding with a sharder, or could be the same entity (Sybil).  In this case, the miner 
would not call that particular sharder, but then the other miners would have to collude as well for this sharder to hide, which is a 
remote possibility. 

One last attack scenario is when all the replica is a Sybil version of the sharder for a particular allocation.  In this case, there is no 
way to verify that the replica is genuine.  To solve this, we propose that a sharder is replaced from its set every n+2 cycles with 
one from the bench.  This ensures that any Sybil entries would be short-lived, and the integrity of the network would be restored, 
if violated.  The sync of the new member takes some time depending on the size of the shard, and after its completed, the new 
shard set is created and active.  

To prevent any long range attacks, we have a Shard Hash  for every shard, so that if an attacker goes back in time and changes a 23

block, it would be reflected at the Shard header. 

2.8 Blobbing dimension QxS 
Fig. 6 shows the blob dimension of the blockchain designed to provide storage capacity to data that cannot fit into the transaction 
data limit size.  Blobs are defined as storage entities that can store large, unstructured data (image, audio, video). Unlike 
FileCoin , we enable fast store and retrieval of the stored data with no induced latency, something that Filecoin does to enable 24

replication integrity.  Additionally, we do not cater to Retrieval markets, and expect to perform a CDN (content delivery network) 
like function. Also, our group of blobbers would typically compose of a select group of enterprise-grade quality storage 
infrastructure companies with high network bandwidth connectivity as opposed to home storage devices. The blobbers on our 
network earn a collective token based on amount of data added per n cycles.  There are QxS blobbers and they get rewarded 
equally as data flows in, based on the size of data in n cycles. Data is distributed evenly among Q blobbers.  If data is uploaded 
via the data or code chain and it exceeds the size limit of the data chain, it is sent to the blob assuming the user has enough 

 Shard Hash is defined as a hash of all the block hashes23

 https://filecoin.io/filecoin.pdf24
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reserve token for such data to stay persistent, otherwise the transaction would be invalid.  A user may indicate to the network via 
a transaction that it wants to prune some files to reduce its locked token commitment.  The blobber holding the files would then 
mark those files for deletion.  For each request for a blob, the requestor needs to have enough unlocked tokens in their account. 
As new storage providers are accepted by stakeholders, they are first benched and later added to the list of QxS blobber set as 
storage demand grows.  Blob token rewards are based on the bid rate of the blobbers.  Blobs are impossible to change or fake 
because it would otherwise result in a new hash which will not match with the content hash on the data chain.   

Fig 6. Blobbing dimension of the blockchain consisting of primary, secondary, and bench blobbers 

Unlike FileCoin there is no bid and ask process of selecting storage providers. As with Filecoin, which need proofs to prevent 
Sybil (pretend to store data as several entities), outsourcing (commit to store more data) and generation (claim to store more data) 
attacks, we need to consider these attacks as well.     

The generation attack is a net loss for the attacker because the attacker needs to hold tokens to store data and any reward token is 
divided up among other blobbers.  Of course, it is possible for all blobbers to collude and start generating for the well-being of 
the blobber community.  Although they would still need to collectively hold more tokens than they get rewarded, we can further 
discourage this behavior by making the storage token requirement to be greater exponentially than the reward token for spike 
volumes, which would not normally happen, since content creation takes time. The outsourcing attack is prevented by the same 
algorithm as discussed in the Sharding section 2.7, where the miner randomly calls a replica of a blob allocation.  The Sybil attack 
is prevented by the same algorithm proposed in section 2.7, where one of the blobbers in the QxS set is replaced by one from the 
bench.  The sync time may take a little longer than for the shard as the storage is expected to be much larger by at least 2 orders 
of magnitude. However, this creation and deletion process would prevent a fake replica from existing on the network.  If there is 
a good network connection, and the blob sizes are kept reasonably small, then the sync process will not take that much time. The 
network rewards the blobbers tokens based on the storage used.  However, it is important to note that there is no reward for 
retrieval, but if a blobber has a high latency or if there is no data, then they will be punished during the retrieval process.  Since a 
blobber gets their token rewards after n cycles of service, they are held accountable to any problems during the retrieval process, 
whether that is due to bad bandwidth or  any malicious activity. 

2.9 Application example with multiple chains, shards, and blobs 
Fig. 7 shows how a contract (e.g. parse Oracle file) in codeA chain calls a utility contract in ShardA 0 of code A chain, which 
calls another contract (e.g. get Oracle file) in ShardB 0 of code B chain, which retrieves a content address from ShardD 2 of the 
data chain, and then retrieves the actual file (Oracle file) from Blob 2.  Finally, the codeA contract parses the file and outputs a 
particular data, and records it on the data chain (mined on the next block).  This is similar to an enterprise micro-services 
architecture for agile web development where different teams or businesses develop different services and updates their codes.  
An example would be companyB uses codeB chain because of larger block times to perform data analytics.  CompanyA can 
request that service from their contract in codeA chain, which has a smaller block time and get the results posted on the data 
chain.  
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Fig 7. Calls to different chains, shards, and blobs from a single transaction 

2.10 Logically separate miners, sharders, blobbers  
Fig. 8 shows that a logically different set of miners, sharders, and blobbers exist for different chains. However, the same physical 
miner can have different mining nodes for different chains. So, if a miner, sharder, and blobber have a good reputation on one 
chain, then they will have a good chance of being included on a different chain. So, the miners can develop the same trusted 
reputation as merged-mining in Bitcoin, and new chains will not have suffer any negative consequences of “starting over”. 

Fig. 8 Logical separation of miners, sharders, and blobbers for different chains 

2.11 Transaction Processing  
The transaction processing of a block is shown in Fig. 9.  The transactions are queued in multiple threads, sorted based on priority 
of their stakes before they are placed in the block.  The multiple threads can be processed on one server or a cluster of servers.  

Fig. 9 Transaction processing sequence inside a block 

Each transaction is processed serially within a thread, even though there are multiple threads or cluster of servers. However, 
states can only be changed by one transaction and not concurrently.  And so, within a block, there can be multiple transactions 
with parallel reads and calls, and if there are no concurrent state changes, they will be successfully included in the block.  So, if a 
state is locked by one transaction during the block processing time, then all other transactions that try to change that state will 
have to wait their turn or fail if it goes beyond its allocated wall time, and will not be included in the block.  This architectural 
implementation makes sure that all code will be thread-safe, regardless of the number of parallel transactions.   

If a malicious transaction calls itself recursively and try to change state, then it will fail.  If a transaction changes multiple states, 
such as paying several entities, then it is acceptable if those entities are not locked by another transaction.  A malicious 
transaction can also try to call several contracts to waste a lot of computing power, memory, and bandwidth; but by doing so, it 
needs to lock tokens and its intent would be hampered by the wall time.  

The bandwidth, computation, memory, and storage are all based on an individual’s stake.  For storage and transactions, the user 
needs to lock their tokens for a period of time.  Having very few tokens in the account does not mean a transaction will not go 
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through, but it will be sent at a much lower priority, and will take time.  If there are 100,000 users, and the block has transactions 
from 100 users, and each of them have similar stakes, then the bandwidth, compute, memory, and storage size per user is 1/100 of 
the node’s capacity. In the case of IoT devices or Oracles, the application is responsible for locking tokens to guarantee 
availability of the required bandwidth, compute, memory, and storage size per device. 

3 Forking parameters 
Fig. 10 shows the different types of parameters that can lead to a forked chain.   

3.1 Stateless and Stateful chains 
The code and data chains are examples of a stateless and a stateful chain.  A stateless chain does not require an expensive high 
RAM server for their chain or shard, and so will be a lot less expensive to configure a data chain, say for an IoT application. 

3.2 Block Time 
Block time is another parameter that has forked many chains in the past, where the need for several transactions is chosen against 
the time to finalize a transaction. With a shorter block time, transactions within a block can get finalized faster. But with a shorter 
block, there will less number of transactions in the block and a higher overhead for the block.  Additionally, if a code chain has a 
short block time, and if a code takes a longer time to execute then it can never be included in the block.  However, in the case of 
micro-payments, the transaction finality is important.  

3.3 Resource Usage and Fees 
The fees for compute, bandwidth, and memory usage for a transaction is typically what miners charge to prioritize a transaction 
over others in Bitcoin and Ethereum.  While this works for high value payment transactions, other applications such as IoT and 
web applications, need to have very little fees or none imposed on their computation, memory, bandwidth and storage. There are 
several decentralized storage services offered by Storj, MaidSafe, Siacoin, and Filecoin.  They are based on order matching 
bidders and sellers, but need recurrent proofs and transactions to be able to create a viable marketplace.  However, because of the 
extra layer of complexity, computing, and bandwidth required to generate this market, it would be difficult to keep the cost down.  
Additionally, their approach is slower and would bottleneck miners to store the data, and difficult to maintain enterprise grade 
quality.Individual storage on home computers cannot effectively compete with enterprise data centers with respect to scale, 
bandwidth, and reliability.  Since IoT and other Enterprise applications need an enterprise level storage but at a low cost, 0chain 
network would bear that cost for all these applications. Users or applications storing the data permanently need to lock some 
tokens.  Users or applications retrieving the data need to lock tokens as well.   

Fig. 10 Forking parameters for the blockchain protocol 
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3.4 Number of Block Producers 
The number of block producers determine the level of decentralization, and how fast the finality can take place.  The minimum 
set of block producers need to be at least 3 for a 2/3 majority to validated a transaction. So, if one block producer mines a block, 
that block needs to be verified by the other 2 block producers, before a transaction is deemed finalized.  The less number of 
verification enables less number of redundant computations required for verification and would serve to reduce energy and 
financial cost. As the number of block producers increases, the security and decentralization of the transaction increases.   

3.5 Number of Secondaries 
Based on the number of block producers, block time, and scheme, the transaction finality can be designed to be long or very 
short.  In a typical Delegated-Proof-of-Stake, there is one block producer and the produced block is verified by 2/3 miners for it 
to be validated and added to the chain.  If the number of block producers are small, say 3, the minimum for a proper decentralized 
system, then the finality is based on the block time of generating 3 blocks.  Another way to reduce the finality is to add secondary 
miners.  They serve the purpose of a quick validation and security over network loss or censorship.  If you have at least 2 
secondary set of miners, then for every primary block producer you have 2 secondaries that are producing the blocks in the same 
time slot.  If the primary does not produce a block because it is offline or is under a DDoS attack, one of the secondary miner’s 
block will be advanced to the network.  The number of secondary miners is an important parameter, as it speeds up finality and 
increases the chance of data availability.  

3.6 Bench  
The number of bench players for miners, sharders, and blobbers can be determined based on the level of integrity required for the 
chain. A deeper bench provides a better security and dynamic decentralization, but suffer from slower finality.  

3.7 Signature, Anonymity, Verification 
The other forking parameters include the type of signature, anonymity, and verification. Elliptic curve signatures are faster to 
encrypt messages compared to traditional RSA, and there are other signatures in development in the crypto community to 
consider depending on whether one desires more security such as Lamport or faster execution such as BLS.  Anonymity is another 
parameter in Fig. 10 to consider to fork a chain.  The anonymity of a user can be done through ring signatures, but to prove the 
validity of a computation, one needs to provide a verifiable proof of the transaction so that the network can verify it through such 
proof.  Such is the intent of the zk-SNARK algorithm, but it has one issue — it needs a trusted setup.  zk-STARK is an evolution 
of the SNARK algorithm and it does not need a master key.  Verification is another parameter that may change in the future.  
Today, every transaction is verified by replaying the transaction or looking at the Block Hash.  Replaying the transaction provides 
a decentralized verification process, but this forces redundant operations wasting money and energy. If this validation is not a 
replay of the full transaction operation but a shorter verification enabled by the zk-STARK like algorithm, then it will cut down 
on the energy and cost of the network.  

3.7 Stakes 
The stake tokens are necessary to make sure that miners do not engage in malicious activity, and the number of tokens staked 
may differ from one application to another.  A simple IoT application may not need a big stake, but an exchange or bank 
operation miners may need to put up a bigger stake and have a larger time period to lock their stake.   

The staked token for the Miners, Sharders, and Blobbers influence the inflation incurred by the network.  The staked amount is 
decided based on the token value, inflation pressure, and token rewards given out. 

3.8 Initial chain parameters 
The initial parameters chosen for the chains are as shown in Fig. 11.  This would be the genesis chain for 0chain.  The idea is to 
start with a smart-contract chain, have a sub-second finality, be scalable with concurrent threads and clusters, and have flexibility 
to self-fork in future into infinite chains for different verticals.  All chains on 0chain have absolutely zero cost to the user for 
compute, memory, bandwidth, and storage, as long as they lock sufficient number of 0chain tokens. 
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Fig. 11 Initial parameters of the blockchain protocol 

4 IoT platform + Web/Enterprise application 
Fig. 12 shows an IoT platform architecture that can be implemented on the network.   The data from an IoT device is sent to the 
data chain.  The application then sends a transaction to call an appropriate smart contract on the code chain that acts on the data 
received from the IoT device, and generate new data sets such as calibrated data, averaged data, AI related data, and alerts.  The 
data is placed either on the data chain or blob depending on the size of the dataset.  With all the data on the blockchain, any client 
application can visualize the data by using a client browser or a hosted server that copies the data from the blockchain.  In a 
similar way, one can visualize how a generic web or enterprise application can use this model to separately upload data to data 
chain or blob and upload micro-services on to the code chain. 

Fig. 12 IoT platform implementation on the blockchain 

5 Reward Pool 
The reward pool is a pool reserved for miners, sharders, and blobbers. Fig. 13 shows how the pool will be reduced over time, as 
inflation protocol regulate the number of tokens given out over a period.  As the number of applications increase, the reward pool 
will be used more often for the miners, sharders, and blobbers.  This may increase the inflation rate of the rewards. The inflation 
protocol sets the reward size based on the bid rate of the incentivized entities, and this rate may change periodically as the value 
of the token changes, for the mutual benefit of the network and the miners.   

The reward pool may last 100 years or more, depending on how the protocol control inflation, which is a function of the tokens 
given out, dApp lock period and tokens, miner bid value, and the value of the token.  If there is a big demand in the cloud service, 
say two times, then there may be as many tokens given out, but the value of token is likely to increase in value because of higher 
demand, thus causing the token price to increase, which would reduce the number of rewarded tokens. And so, the inflation rate 
is expected to remain about the same regardless of the supply and demand of cloud service.  
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Compared to Ethereum and Bitcoin, we expect to start the inflation at a much lower rate, nominally set at 1%, but will vary 
depending on the number of transactions and storage needed by the applications, but will nominally look like as in Fig. 13.  

Fig. 13 Reward pool payout over 20 years 

6 Attack Scenarios  

6.1 Sybil 
A Sybil attack happens when a malicious node pretends to be a miner and sends fake blocks to a client.  This is hard to do in our 
network, because there are only a few miners on the MxN set at any given time.  Even if the attacker is successful and pretends to 
be one of the miners, the client can easily verify if the miner’s signature and Block Hashes are consistent with other nodes.  Once 
an honest node is determined, then the client can latch on it unless that node is replaced by another from the bench, in which case 
the network will automatically handle the transition.  

6.2 DoS 
DoS (Denial of Service) attacks by the user can be easily traced and the user tokens can be frozen.  The user needs to have ample 
tokens to perform this attack.  So, there are mitigation steps that the network can take to prevent the user from flooding the 
network. 

6.3 Double Spend 
A double spend attack can happen if a miner colludes and wins a majority consensus. This is difficult and self-defeating because 
of the stake the 2/3+ miners need to lock up, not to mention their accounts frozen and transaction reversed or forked at the end. 

6.4 Nothing-at-Stake 
A Nothing at Stake attack happens when a miner does not have any stake and mines a block to all available forks to increase their 
chances of getting rewards.  Such economic incentive is not applicable for our network.  This was a problem for naïve proof-of-
stake algorithms, but since all miners need to reserve stakes for a period of time, this is not an applicable attack scenario. 

6.5 Long-Range 
A Long-Range attack happens when a miner secretly creates blocks from genesis and then reveals itself for other nodes to accept 
its version of truth.  This attack is not applicable because there is a designated slot for every assigned miner to create a block, and 
the hash of the block is signed by the miner.  Every block is signed by the assigned miner which is then randomly shuffled.  

6.6 Initial Distribution or a new Fork 
During the initial Distribution or at a new Fork, or in the case of a bribe, the miners could generate bad blocks, but since they 
have locked stakes, the opportunity cost for such activity is high.  Additionally, chain creators can stipulate a high percentage of 
existing miners with high reputation to be on the new chain to preserve its integrity.  
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6.7 Selfish mining 
Selfish mining is traditionally meant only for proof-of-work systems where the miner secretly mines blocks and reveals them 
later to win the longest chain and hence win all the miner tokens away from other block creators.  For this network, selfish 
mining can occur if it selects itself repeatedly in the MxN set, which it cannot do unless it colludes with others on the network. 

6.8 Blobber attacks 
Blobbers can have several attack scenarios identified by Filecoin.  The Sybil attack, where the blobber pretends to store as 
multiple blob entities, will be prevented with the replacement algorithm, where a blob is periodically replaced with another one 
from the bench. Blobbers pretending to commit more or claiming to store more can be avoided by having the miners commit to 
random calls during the retrieval process. And generation attacks are inherently lossy as the attacker would then need to purchase 
tokens. 

6.9 User attacks  
User attacks based on creating code that causes infinite loops, calls, reads, or writes are inherently prevented with a finite wall 
time for a transaction.  The user can only attack until it has exhausted its allocated portion of token resources, which would be 
self-defeating, as they would need to buy more tokens to continue the attack. Additionally, these attacks would be continually 
monitored by the network and trigger an account from being frozen. 
A large data upload attacks can be conducted by a malicious client.  Since the upload needs to finish within the transaction wall 
time, the upload transaction would be terminated.  If this behavior is persisted, the user will exhaust its token resources and 
would need to purchase additional tokens to continue the attack. 

7 Other Items 
7.1 Roadmap  
The current development has been ongoing since July 2017 on the design of the protocol, its nuances and security issues. The 
following roadmap in Fig. 14 gives a development roadmap leading up to the launch of main net, following which we expect to 
work on other aspects of the blockchain as detailed in Fig. 15. 

Fig 14. Development timeline leading up to the launch of main net. 

  

Fig 15. Development timeline after main net. 
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7.2 Token Distribution 
The distribution of tokens (by the 0chain Foundation) is outlined on the pie chart of Fig. 16.  There will be a total of 400,000,000 
(400 million) tokens minted. The distribution will be as follows: 30% for the team, advisors, development partners, and seed 
investors, 10% for the private sale, 10% reserved for future offering, and 50% for miners, sharders, and blobbers.  The team will 
have a linear vesting cycle of 4 years, and will have their tokens locked for 180 days after the pre-sale event concludes.  The 
investors participating in the pre-sale will have 10% allocated on the day of the close of the pre-sale event, and the balance 
linearly vested over the next 180 days.  The reserve pool will have 50% of its tokens locked for 2 years and the rest for 4 years.  
The ZCHN (0chain) tokens will first be distributed as ERC-20 tokens, and then seamlessly converted to ZCHN native tokens 
after the main net is launched. 

Fig. 16. 0chain token distribution. 

7.3 Go To Market Strategy 
We will be partnering with dApps that need to off-load data for fast computation and storage activity in a decentralized manner. 
We’re positioning ourselves as a decentralized cloud solution, rather than a competitive chain or a fund-raising platform such as 
Ethereum, NEO, Stellar, and will partner with dApps on any existing chain and future ones to optimize their current solution with 
higher performance, decentralization, security, and cost. 

7.4 Utility Token 
ZCHN tokens will allow you to compute and store data on our blockchain, as well as create and run decentralized applications, 
and create new chains for different verticals. The network does not derive any fees or revenues from the blockchain. 

7.5 Intrinsic Value Token 
ZCHN token is expected to be considered an intrinsic value token since it is proportional to the computation and storage the 
token holder locks up their tokens.  Unlike other tokens, which are primarily used as a store of value, 0chain token encompasses 
both value and data.  A dApp would not dispose of their tokens, otherwise their business will be affected.  Similarly, an individual 
would think twice about deleting their images and videos stored on our network, in order to dispose their tokens. 

7.6 Governance 
The governance and development of the protocol will be determined by the foundation initially for up to 3-4 years, and later by 
all stakeholders based on a 2/3 majority voting.  Unless a catastrophic events arises, we expect the protocol to self-correct initial 
parameters set for governance.  The key areas of such are development goals, inflation rate, lock rate, punishment rate, changes to 
the parameters of a particular chain, and changes to the computing and storage infrastructure. 

7.7 Formal Proofs 
Formal proofs of what we have stated in this document is expected to be completed in the coming months. While proofs are 
necessary and will be on one of our tracks of development, they will be done in parallel with code development as outlined on the 
roadmap. 
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Team 
Saswata Basu, Project Lead, Founder 
Saswata is a visionary entrepreneur with 25 years of experience, and has worked in pioneering technologies such as Blockchain, 
AI, IoT, Cloud, CleanTech, and 4G at various industries including Intel, Nortel, Harris, and Aviat.  A full stack developer, 
Saswata has written code for multiple applications and have open sourced some in GitHub.  Saswata received his MS and Ph.D. 
at UCLA.  
https://www.linkedin.com/in/saswatabasu/ 
https://github.com/guruhubb/ 

Thomas Austin, Technical Lead, Co-Founder 
Thomas is an assistant professor at San Jose State University, where he is an expert in information security and programming 
language paradigms.  He earned his PhD in computer science from UC Santa Cruz.  He has previously worked with Mozilla's 
research group, ESIEA Ouest's Cryptology and Operational Virology lab, and CloudFlare, Inc. 
http://www.sjsu.edu/people/thomas.austin/publications/ 
https://www.linkedin.com/in/tom-austin-49195b1/ 
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