
A Network of Distributed Ledgers

Jae Kwon jae@tendermint.com

Ethan Buchman ethan@tendermint.com

For discussions, join our community chat!

NOTE: If you can read this on GitHub, then we’re still actively
developing this document. Please check regularly for updates!

The combined success of the open-source ecosystem,

decentralized �le-sharing, and public cryptocurrencies has

inspired an understanding that decentralized internet protocols

can be used to radically improve socio-economic infrastructure.

We have seen specialized blockchain applications like Bitcoin [1] (a

cryptocurrency), Zerocash [2] (a cryptocurrency for privacy), and

generalized smart contract platforms such as Ethereum [3], with

countless distributed applications for the Etherium Virtual

Machine (EVM) such as Augur (a prediction market) and TheDAO

[4] (an investment club).

To date, however, these blockchains have suffered from a number

of drawbacks, including their gross energy inef�ciency, poor or

limited performance, and immature governance mechanisms.

Proposals to scale Bitcoin’s transaction throughput, such as

Segregated-Witness [5] and BitcoinNG [6], are vertical scaling

solutions that remain limited by the capacity of a single physical

machine, in order to ensure the property of complete auditability.

The Lightning Network [7] can help scale Bitcoin transaction

volume by leaving some transactions off the ledger completely,

and is well suited for micropayments and privacy-preserving

payment rails, but may not be suitable for more generalized

scaling needs.

An ideal solution is one that allows multiple parallel blockchains to

interoperate while retaining their security properties. This has

proven dif�cult, if not impossible, with proof-of-work. Merged

mining, for instance, allows the work done to secure a parent

chain to be reused on a child chain, but transactions must still be

validated, in order, by each node, and a merge-mined blockchain

is vulnerable to attack if a majority of the hashing power on the

parent is not actively merge-mining the child. An academic review

of alternative blockchain network architectures is provided for

additional context, and we provide summaries of other proposals

and their drawbacks in Related Work.

Here we present Cosmos, a novel blockchain network architecture

that addresses all of these problems. Cosmos is a network of many

independent blockchains, called zones. The zones are powered by

Tendermint Core [8], which provides a high-performance,

consistent, secure PBFT-like consensus engine, where strict fork-

accountability guarantees hold over the behaviour of malicious

actors. Tendermint Core’s BFT consensus algorithm is well suited

for scaling public proof-of-stake blockchains.

The �rst zone on Cosmos is called the Cosmos Hub. The Cosmos

Hub is a multi-asset proof-of-stake cryptocurrency with a simple

governance mechanism which enables the network to adapt and

upgrade. In addition, the Cosmos Hub can be extended by

connecting other zones.

The hub and zones of the Cosmos network communicate with

each other via an inter-blockchain communication (IBC) protocol,

a kind of virtual UDP or TCP for blockchains. Tokens can be

transferred from one zone to another securely and quickly

without the need for exchange liquidity between zones. Instead,

all inter-zone token transfers go through the Cosmos Hub, which

keeps track of the total amount of tokens held by each zone. The

hub isolates each zone from the failure of other zones. Because

anyone can connect a new zone to the Cosmos Hub, zones allow

for future-compatibility with new blockchain innovations.

In this section we describe the Tendermint consensus protocol

and the interface used to build applications with it. For more

details, see the appendix.

In classical Byzantine fault-tolerant (BFT) algorithms, each node

has the same weight. In Tendermint, nodes have a non-negative

amount of voting power, and nodes that have positive voting

power are called validators. Validators participate in the

consensus protocol by broadcasting cryptographic signatures, or

votes, to agree upon the next block.

Validators’ voting powers are determined at genesis, or are

changed deterministically by the blockchain, depending on the

application. For example, in a proof-of-stake application such as

the Cosmos Hub, the voting power may be determined by the

amount of staking tokens bonded as collateral.

NOTE: Fractions like ⅔ and ⅓ refer to fractions of the total voting

power, never the total number of validators, unless all the validators

have equal weight. >⅔ means “more than ⅔”, ≥⅓ means “at least

⅓”.

Tendermint is a partially synchronous BFT consensus protocol

derived from the DLS consensus algorithm [20]. Tendermint is

notable for its simplicity, performance, and fork-accountability.
The protocol requires a �xed known set of validators, where each
validator is identi�ed by their public key. Validators attempt to
come to consensus on one block at a time, where a block is a list
of transactions. Voting for consensus on a block proceeds in
rounds. Each round has a round-leader, or proposer, who
proposes a block. The validators then vote, in stages, on whether
to accept the proposed block or move on to the next round. The
proposer for a round is chosen deterministically from the ordered
list of validators, in proportion to their voting power.

The full details of the protocol are described here.

Tendermint’s security derives from its use of optimal Byzantine
fault-tolerance via super-majority (>⅔) voting and a locking
mechanism. Together, they ensure that:

≥⅓ voting power must be Byzantine to cause a violation of
safety, where more than two values are committed.

if any set of validators ever succeeds in violating safety, or even
attempts to do so, they can be identi�ed by the protocol. This
includes both voting for con�icting blocks and broadcasting
unjusti�ed votes.

Despite its strong guarantees, Tendermint provides exceptional
performance. In benchmarks of 64 nodes distributed across 7
datacenters on 5 continents, on commodity cloud instances,
Tendermint consensus can process thousands of transactions per
second, with commit latencies on the order of one to two seconds.
Notably, performance of well over a thousand transactions per
second is maintained even in harsh adversarial conditions, with
validators crashing or broadcasting maliciously crafted votes. See
the �gure below for details.

A major bene�t of Tendermint’s consensus algorithm is simpli�ed
light client security, making it an ideal candidate for mobile and
internet-of-things use cases. While a Bitcoin light client must sync
chains of block headers and �nd the one with the most proof of
work, Tendermint light clients need only to keep up with changes
to the validator set, and then verify the >⅔ PreCommits in the
latest block to determine the latest state.

Succinct light client proofs also enable inter-blockchain
communication.

Tendermint has protective measures for preventing certain
notable attacks, like long-range-nothing-at-stake double spends
and censorship. These are discussed more fully in the appendix.

The Tendermint consensus algorithm is implemented in a

program called Tendermint Core. Tendermint Core is an

application-agnostic “consensus engine” that can turn any

deterministic blackbox application into a distributedly replicated

blockchain. Tendermint Core connects to blockchain applications

via the Application Blockchain Interface (ABCI) [17]. Thus, ABCI

allows for blockchain applications to be programmed in any

language, not just the programming language that the consensus

engine is written in. Additionally, ABCI makes it possible to easily

swap out the consensus layer of any existing blockchain stack.

We draw an analogy with the well-known cryptocurrency Bitcoin.

Bitcoin is a cryptocurrency blockchain where each node maintains

a fully audited Unspent Transaction Output (UTXO) database. If

one wanted to create a Bitcoin-like system on top of ABCI,

Tendermint Core would be responsible for

Sharing blocks and transactions between nodes

Establishing a canonical/immutable order of transactions (the

blockchain)

Meanwhile, the ABCI application would be responsible for

Maintaining the UTXO database

Validating cryptographic signatures of transactions

Preventing transactions from spending non-existent funds

Allowing clients to query the UTXO database

Tendermint is able to decompose the blockchain design by

offering a very simple API between the application process and

consensus process.

Cosmos is a network of independent parallel blockchains that are

each powered by classical BFT consensus algorithms like

Tendermint 1.

The �rst blockchain in this network will be the Cosmos Hub. The

Cosmos Hub connects to many other blockchains (or zones) via a

novel inter-blockchain communication protocol. The Cosmos Hub

tracks numerous token types and keeps record of the total

number of tokens in each connected zone. Tokens can be

transferred from one zone to another securely and quickly

without the need for a liquid exchange between zones, because all

inter-zone coin transfers go through the Cosmos Hub.

This architecture solves many problems that the blockchain space

faces today, such as application interoperability, scalability, and

seamless upgradability. For example, zones derived from Bitcoind,

Go-Ethereum, CryptoNote, ZCash, or any blockchain system can

be plugged into the Cosmos Hub. These zones allow Cosmos to

scale in�nitely to meet global transaction demand. Zones are also

a great �t for a distributed exchange, which will be supported as

well.

Cosmos is not just a single distributed ledger, and the Cosmos

Hub isn’t a walled garden or the center of its universe. We are

designing a protocol for an open network of distributed ledgers

that can serve as a new foundation for future �nancial systems,

based on principles of cryptography, sound economics, consensus

theory, transparency, and accountability.

The Cosmos Hub is the �rst public blockchain in the Cosmos

Network, powered by Tendermint’s BFT consensus algorithm. The

Tendermint open-source project was born in 2014 to address the

speed, scalability, and environmental issues of Bitcoin’s proof-of-

work consensus algorithm. By using and improving upon proven

BFT algorithms developed at MIT in 1988 [20], the Tendermint
team was the �rst to conceptually demonstrate a proof-of-stake
cryptocurrency that addresses the nothing-at-stake problem
suffered by �rst-generation proof-of-stake cryptocurrencies such
as NXT and BitShares1.0.

Today, practically all Bitcoin mobile wallets use trusted servers to
provide them with transaction veri�cation. This is because proof-
of-work requires waiting for many con�rmations before a
transaction can be considered irreversibly committed. Double-
spend attacks have already been demonstrated on services like
CoinBase.

Unlike other blockchain consensus systems, Tendermint offers
instant and provably secure mobile-client payment veri�cation.
Since the Tendermint is designed to never fork at all, mobile
wallets can receive instant transaction con�rmation, which makes
trustless and practical payments a reality on smartphones. This
has signi�cant rami�cations for Internet of Things applications as
well.

Validators in Cosmos have a similar role to Bitcoin miners, but
instead use cryptographic signatures to vote. Validators are
secure, dedicated machines that are responsible for committing
blocks. Non-validators can delegate their staking tokens (called
“atoms”) to any validator to earn a portion of block fees and atom
rewards, but they incur the risk of getting punished (slashed) if the
delegate validator gets hacked or violates the protocol. The proven
safety guarantees of Tendermint BFT consensus, and the collateral
deposit of stakeholders–validators and delegators–provide
provable, quanti�able security for nodes and light clients.

Distributed public ledgers should have a constitution and a
governance system. Bitcoin relies on the Bitcoin Foundation and

mining to coordinate upgrades, but this is a slow process.
Ethereum split into ETH and ETC after hard-forking to address
TheDAO hack, largely because there was no prior social contract
nor mechanism for making such decisions.

Validators and delegators on the Cosmos Hub can vote on
proposals that can change preset parameters of the system
automatically (such as the block gas limit), coordinate upgrades, as
well as vote on amendments to the human-readable constitution
that govern the policies of the Cosmos Hub. The constitution
allows for cohesion among the stakeholders on issues such as
theft and bugs (such as TheDAO incident), allowing for quicker and
cleaner resolution.

Each zone can also have their own constitution and governance
mechanism as well. For example, the Cosmos Hub could have a
constitution that enforces immutability at the Hub (no roll-backs,
save for bugs of the Cosmos Hub node implementation), while
each zone can set their own policies regarding roll-backs.

By enabling interoperability among differing policy zones, the
Cosmos network gives its users ultimate freedom and potential for
permissionless experimentation.

Here we describe a novel model of decentralization and scalability.
Cosmos is a network of many blockchains powered by
Tendermint. While existing proposals aim to create a “single
blockchain” with total global transaction ordering, Cosmos
permits many blockchains to run concurrently with one another
while retaining interoperability.

At the basis, the Cosmos Hub manages many independent
blockchains called “zones” (sometimes referred to as “shards”, in
reference to the database scaling technique known as “sharding”).

A constant stream of recent block commits from zones posted on

the Hub allows the Hub to keep up with the state of each zone.

Likewise, each zone keeps up with the state of the Hub (but zones

do not keep up with each other except indirectly through the

Hub). Packets of information are then communicated from one

zone to another by posting Merkle-proofs as evidence that the

information was sent and received. This mechanism is called

inter-blockchain communication, or IBC for short.

Any of the zones can themselves be hubs to form an acyclic graph,

but for the sake of clarity we will only describe the simple

con�guration where there is only one hub, and many non-hub

zones.

The Cosmos Hub is a blockchain that hosts a multi-asset

distributed ledger, where tokens can be held by individual users or

by zones themselves. These tokens can be moved from one zone

to another in a special IBC packet called a "coin packet". The hub is

responsible for preserving the global invariance of the total

amount of each token across the zones. IBC coin packet

transactions must be committed by the sender, hub, and receiver

blockchains.

Since the Cosmos Hub acts as the central ledger for the whole

system, the security of the Hub is of paramount importance. While

each zone may be a Tendermint blockchain that is secured by as

few as 4 (or even less if BFT consensus is not needed), the Hub

must be secured by a globally decentralized set of validators that

can withstand the most severe attack scenarios, such as a

continental network partition or a nation-state sponsored attack.

A Cosmos zone is an independent blockchain that exchanges IBC

messages with the Hub. From the Hub’s perspective, a zone is a

multi-asset dynamic-membership multi-signature account that

can send and receive tokens using IBC packets. Like a

cryptocurrency account, a zone cannot transfer more tokens than

it has, but can receive tokens from others who have them. A zone

may be designated as an "source" of one or more token types,

granting it the power to in�ate that token supply.

Atoms of the Cosmos Hub may be staked by validators of a zone

connected to the Hub. While double-spend attacks on these zones

would result in the slashing of atoms with Tendermint’s fork-

accountability, a zone where >⅔ of the voting power are

Byzantine can commit invalid state. The Cosmos Hub does not

verify or execute transactions committed on other zones, so it is

the responsibility of users to send tokens to zones that they trust.

In the future, the Cosmos Hub’s governance system may pass Hub

improvement proposals that account for zone failures. For

example, outbound token transfers from some (or all) zones may

be throttled to allow for the emergency circuit-breaking of zones

(a temporary halt of token transfers) when an attack is detected.

Now we look at how the Hub and zones communicate with each

other. For example, if there are three blockchains, “Zone1”, “Zone2”,

and “Hub”, and we wish for "Zone1" to produce a packet destined

for “Zone2” going through “Hub”. To move a packet from one

blockchain to another, a proof is posted on the receiving chain.

The proof states that the sending chain published a packet for the

alleged destination. For the receiving chain to check this proof, it

must be able keep up with the sender’s block headers. This

mechanism is similar to that used by sidechains, which requires

two interacting chains to be aware of one another via a

bidirectional stream of proof-of-existence datagrams

(transactions).

The IBC protocol can naturally be de�ned using two types of

transactions: an IBCBlockCommitTx transaction, which allows a

blockchain to prove to any observer of its most recent block-hash,

and an IBCPacketTx transaction, which allows a blockchain to

prove to any observer that the given packet was indeed published

by the sender’s application, via a Merkle-proof to the recent

block-hash.

By splitting the IBC mechanics into two separate transactions, we

allow the native fee market-mechanism of the receiving chain to

determine which packets get committed (i.e. acknowledged), while

allowing for complete freedom on the sending chain as to how

many outbound packets are allowed.

In the example above, in order to update the block-hash of "Zone1"

on “Hub” (or of “Hub” on “Zone2”), an IBCBlockCommitTx

transaction must be posted on “Hub” with the block-hash of

“Zone1” (or on "Zone2" with the block-hash of “Hub”).

See IBCBlockCommitTx and IBCPacketTx for for more information
on the two IBC transaction types.

In the same way that Bitcoin is more secure by being a distributed,

mass-replicated ledger, we can make exchanges less vulnerable to

external and internal hacks by running it on the blockchain. We

call this a distributed exchange.

What the cryptocurrency community calls a decentralized

exchange today are based on something called “atomic cross-

chain” (AXC) transactions. With an AXC transaction, two users on

two different chains can make two transfer transactions that are

committed together on both ledgers, or none at all (i.e.

atomically). For example, two users can trade bitcoins for ether (or

any two tokens on two different ledgers) using AXC transactions,

even though Bitcoin and Ethereum are not connected to each

other. The bene�t of running an exchange on AXC transactions is

that neither users need to trust each other or the trade-matching

service. The downside is that both parties need to be online for

the trade to occur.

Another type of decentralized exchange is a mass-replicated

distributed exchange that runs on its own blockchain. Users on

this kind of exchange can submit a limit order and turn their

computer off, and the trade can execute without the user being

online. The blockchain matches and completes the trade on behalf

of the trader.

A centralized exchange can create a deep orderbook of limit
orders and thereby attract more traders. Liquidity begets more
liquidity in the exchange world, and so there is a strong network
effect (or at least a winner-take-most effect) in the exchange
business. The current leader for cryptocurrency exchanges today
is Poloniex with a 24-hour volume of $20M, and in second place is
Bit�nex with a 24-hour volume of $5M. Given such strong network
effects, it is unlikely for AXC-based decentralized exchanges to
win volume over the centralized exchanges. For a decentralized
exchange to compete with a centralized exchange, it would need
to support deep orderbooks with limit orders. Only a distributed
exchange on a blockchain can provide that.

Tendermint provides additional bene�ts of faster transaction
commits. By prioritizing fast �nality without sacri�cing
consistency, zones in Cosmos can �nalize transactions fast – for
both exchange order transactions as well as IBC token transfers to
and from other zones.

Given the state of cryptocurrency exchanges today, a great
application for Cosmos is the distributed exchange (aka the
Cosmos DEX). The transaction throughput capacity as well as
commit latency can be comparable to those of centralized
exchanges. Traders can submit limit orders that can be executed
without both parties having to be online. And with Tendermint,
the Cosmos hub, and IBC, traders can move funds in and out of
the exchange to and from other zones with speed.

A privileged zone can act as the source of a bridged token of
another cryptocurrency. A bridge is similar to the relationship
between a Cosmos hub and zone; both must keep up with the
latest blocks of the other in order to verify proofs that tokens have
moved from one to the other. A "bridge-zone" on the Cosmos
network keeps up with the Hub as well as the other

cryptocurrency. The indirection through the bridge-zone allows
the logic of the Hub to remain simple and agnostic to other
blockchain consensus strategies such as Bitcoin’s proof-of-work
mining.

Each bridge-zone validator would run a Tendermint-powered
blockchain with a special ABCI bridge-app, but also a full-node of
the “origin” blockchain.

When new blocks are mined on the origin, the bridge-zone
validators will come to agreement on committed blocks by signing
and sharing their respective local view of the origin’s blockchain
tip. When a bridge-zone receives payment on the origin (and
suf�cient con�rmations were agreed to have been seen in the case
of a PoW chain such as Ethereum or Bitcoin), a corresponding
account is created on the bridge-zone with that balance.

In the case of Ethereum, the bridge-zone can share the same
validator-set as the Cosmos Hub. On the Ethereum side (the
origin), a bridge-contract would allow ether holders to send ether
to the bridge-zone by sending it to the bridge-contract on
Ethereum. Once ether is received by the bridge-contract, the
ether cannot be withdrawn unless an appropriate IBC packet is
received by the bridge-contract from the bridge-zone. The
bridge-contract tracks the validator-set of the bridge-zone, which
may be identical to the Cosmos Hub’s validator-set.

In the case of Bitcoin, the concept is similar except that instead of
a single bridge-contract, each UTXO would be controlled by a
threshold multisignature P2SH pubscript. Due to the limitations of
the P2SH system, the signers cannot be identical to the Cosmos
Hub validator-set.

Ether on the bridge-zone (“bridged-ether”) can be transferred to
and from the Hub, and later be destroyed with a transaction that
sends it to a particular withdrawal address on Ethereum. An IBC
packet proving that the transaction occurred on the bridge-zone
can be posted to the Ethereum bridge-contract to allow the ether
to be withdrawn.

In the case of Bitcoin, the restricted scripting system makes it
dif�cult to mirror the IBC coin-transfer mechanism. Each UTXO
has its own independent pubscript, so every UTXO must be
migrated to a new UTXO when there is a change in the set of
Bitcoin escrow signers. One solution is to compress and
decompress the UTXO-set as necessary to keep the total number
of UTXOs down.

The risk of such a bridgeging contract is a rogue validator set. ≥⅓
Byzantine voting power could cause a fork, withdrawing ether
from the bridge-contract on Ethereum while keeping the bridged-
ether on the bridge-zone. Worse, >⅔ Byzantine voting power can
steal ether outright from those who sent it to the bridge-contract
by deviating from the original bridgeging logic of the bridge-zone.

It is possible to address these issues by designing the bridge to be
totally accountable. For example, all IBC packets, from the hub and
the origin, might require acknowledgement by the bridge-zone in
such a way that all state transitions of the bridge-zone can be
ef�ciently challenged and veri�ed by either the hub or the origin’s
bridge-contract. The Hub and the origin should allow the bridge-
zone validators to post collateral, and token transfers out of the
bridge-contract should be delayed (and collateral unbonding
period suf�ciently long) to allow for any challenges to be made by
independent auditors. We leave the design of the speci�cation and
implementation of this system open as a future Cosmos

improvement proposal, to be passed by the Cosmos Hub’s

governance system.

Solving the scaling problem is an open issue for Ethereum.

Currently, Ethereum nodes process every single transaction and

also store all the states. link.

Since Tendermint can commit blocks much faster than Ethereum’s

proof-of-work, EVM zones powered by Tendermint consensus and

operating on bridged-ether can provide higher performance to

Ethereum blockchains. Additionally, though the Cosmos Hub and

IBC packet mechanics does not allow for arbitrary contract logic

execution per se, it can be used to coordinate token movements

between Ethereum contracts running on different zones,

providing a foundation for token-centric Ethereum scaling via

sharding.

Cosmos zones run arbitrary application logic, which is de�ned at

the beginning of the zone’s life and can potentially be updated

over time by governance. Such �exibility allows Cosmos zones to

act as bridges to other cryptocurrencies such as Ethereum or

Bitcoin, and it also permits derivatives of those blockchains,

utilizing the same codebase but with a different validator set and

initial distribution. This allows many existing cryptocurrency

frameworks, such as those of Ethereum, Zerocash, Bitcoin,

CryptoNote and so on, to be used with Tendermint Core, which is

a higher performance consensus engine, on a common network,

opening tremendous opportunity for interoperability across

platforms. Furthermore, as a multi-asset blockchain, a single

transaction may contain multiple inputs and outputs, where each

input can be any token type, enabling Cosmos to serve directly as

a platform for decentralized exchange, though orders are assumed

to be matched via other platforms. Alternatively, a zone can serve

as a distributed fault-tolerant exchange (with orderbooks), which

can be a strict improvement over existing centralized

cryptocurrency exchanges which tend to get hacked over time.

Zones can also serve as blockchain-backed versions of enterprise

and government systems, where pieces of a particular service that

are traditionally run by an organization or group of organizations

are instead run as a ABCI application on a certain zone, which

allows it to inherit the security and interoperability of the public

Cosmos network without sacri�cing control over the underlying

service. Thus, Cosmos may offer the best of both worlds for

organizations looking to utilize blockchain technology but who are

wary of relinquishing control completely to a distributed third

party.

Some claim that a major problem with consistency-favouring

consensus algorithms like Tendermint is that any network

partition which causes there to be no single partition with >⅔
voting power (e.g. ≥⅓ going of�ine) will halt consensus altogether.

The Cosmos architecture can help mitigate this problem by using

a global hub with regional autonomous zones, where voting power

for each zone are distributed based on a common geographic

region. For instance, a common paradigm may be for individual

cities, or regions, to operate their own zones while sharing a

common hub (e.g. the Cosmos Hub), enabling municipal activity to

persist in the event that the hub halts due to a temporary network

partition. Note that this allows real geological, political, and

network-topological features to be considered in designing robust

federated fault-tolerant systems.

NameCoin was one of the �rst blockchains to attempt to solve the

name-resolution problem by adapting the Bitcoin blockchain.

Unfortunately there have been several issues with this approach.

With Namecoin, we can verify that, for example, @satoshi was

registered with a particular public key at some point in the past,

but we wouldn’t know whether the public key had since been

updated recently unless we download all the blocks since the last

update of that name. This is due to the limitation of Bitcoin’s

UTXO transaction Merkle-ization model, where only the

transactions (but not mutable application state) are Merkle-ized

into the block-hash. This lets us prove existence, but not the non-

existence of later updates to a name. Thus, we can’t know for

certain the most recent value of a name without trusting a full

node, or incurring signi�cant costs in bandwidth by downloading

the whole blockchain.

Even if a Merkle-ized search tree were implemented in NameCoin,

its dependency on proof-of-work makes light client veri�cation

problematic. Light clients must download a complete copy of the

headers for all blocks in the entire blockchain (or at least all the

headers since the last update to a name). This means that the

bandwidth requirements scale linearly with the amount of time

[21]. In addition, name-changes on a proof-of-work blockchain

requires waiting for additional proof-of-work con�rmation blocks,

which can take up to an hour on Bitcoin.

With Tendermint, all we need is the most recent block-hash

signed by a quorum of validators (by voting power), and a Merkle

proof to the current value associated with the name. This makes it

possible to have a succinct, quick, and secure light-client

veri�cation of name values.

In Cosmos, we can take this concept and extend it further. Each

name-registration zone in Cosmos can have an associated top-

level-domain (TLD) name such as “.com” or “.org”, and each name-

registration zone can have its own governance and registration

rules.

While the Cosmos Hub is a multi-asset distributed ledger, there is

a special native token called the atom. Atoms are the only staking

token of the Cosmos Hub. Atoms are a license for the holder to

vote, validate, or delegate to other validators. Like Ethereum’s

ether, atoms can also be used to pay for transaction fees to

mitigate spam. Additional in�ationary atoms and block transaction

fees are rewarded to validators and delegators who delegate to

validators.

The BurnAtomTx transaction can be used to recover any

proportionate amount of tokens from the reserve pool.

The initial distribution of atom tokens and validators on Genesis

will go to the donors of the Cosmos Fundraiser (75%), lead donors

(5%), Cosmos Network Foundation (10%), and ALL IN BITS, Inc

(10%). From genesis onward, 1/3 of the total amount of atoms will

be rewarded to bonded validators and delegators every year.

See the Cosmos Plan for additional details.

Unlike Bitcoin or other proof-of-work blockchains, a Tendermint

blockchain gets slower with more validators due to the increased

communication complexity. Fortunately, we can support enough

validators to make for a robust globally distributed blockchain

with very fast transaction con�rmation times, and, as bandwidth,

storage, and parallel compute capacity increases, we will be able

to support more validators in the future.

On genesis day, the maximum number of validators will be set to

100, and this number will increase at a rate of 13% for 10 years, and

settle at 300 validators.

Atom holders who are not already can become validators by

signing and submitting a BondTx transaction. The amount of

atoms provided as collateral must be nonzero. Anyone can become

a validator at any time, except when the size of the current

validator set is greater than the maximum number of validators

allowed. In that case, the transaction is only valid if the amount of

atoms is greater than the amount of effective atoms held by the

smallest validator, where effective atoms include delegated atoms.

When a new validator replaces an existing validator in such a way,

the existing validator becomes inactive and all the atoms and

delegated atoms enter the unbonding state.

There must be some penalty imposed on the validators for any

intentional or unintentional deviation from the sanctioned

protocol. Some evidence is immediately admissible, such as a

double-sign at the same height and round, or a violation of

Year 0: 100
Year 1: 113
Year 2: 127
Year 3: 144
Year 4: 163
Year 5: 184
Year 6: 208
Year 7: 235
Year 8: 265
Year 9: 300
Year 10: 300
...

“prevote-the-lock” (a rule of the Tendermint consensus protocol).

Such evidence will result in the validator losing its good standing

and its bonded atoms as well its proportionate share of tokens in

the reserve pool – collectively called its “stake” – will get slashed.

Sometimes, validators will not be available, either due to regional

network disruptions, power failure, or other reasons. If, at any

point in the past ValidatorTimeoutWindow blocks, a validator’s

commit vote is not included in the blockchain more than

 ValidatorTimeoutMaxAbsent times, that validator will become

inactive, and lose ValidatorTimeoutPenalty (DEFAULT 1%) of its

stake.

Some “malicious” behavior does not produce obviously discernable

evidence on the blockchain. In these cases, the validators can

coordinate out of band to force the timeout of these malicious

validators, if there is a supermajority consensus.

In situations where the Cosmos Hub halts due to a ≥⅓ coalition of

voting power going of�ine, or in situations where a ≥⅓ coalition

of voting power censor evidence of malicious behavior from

entering the blockchain, the hub must recover with a hard-fork

reorg-proposal. (Link to “Forks and Censorship Attacks”).

Cosmos Hub validators can accept any token type or combination

of types as fees for processing a transaction. Each validator can

subjectively set whatever exchange rate it wants, and choose

whatever transactions it wants, as long as the BlockGasLimit is

not exceeded. The collected fees, minus any taxes speci�ed below,

are redistributed to the bonded stakeholders in proportion to

their bonded atoms, every ValidatorPayoutPeriod (DEFAULT 1

hour).

Of the collected transaction fees, ReserveTax (DEFAULT 2%) will
go toward the reserve pool to increase the reserve pool and
increase the security and value of the Cosmos network. These
funds can also be distributed in accordance with the decisions
made by the governance system.

Atom holders who delegate their voting power to other validators
pay a commission to the delegated validator. The commission can
be set by each validator.

The security of the Cosmos Hub is a function of the security of the
underlying validators and the choice of delegation by delegators.
In order to encourage the discovery and early reporting of found
vulnerabilities, the Cosmos Hub encourages hackers to publish
successful exploits via a ReportHackTx transaction that says, “This
validator got hacked. Please send bounty to this address”. Upon
such an exploit, the validator and delegators will become inactive,
 HackPunishmentRatio (default 5%) of everyone’s atoms will get
slashed, and HackRewardRatio (default 5%) of everyone’s atoms
will get rewarded to the hacker’s bounty address. The validator
must recover the remaining atoms by using their backup key.

In order to prevent this feature from being abused to transfer
unvested atoms, the portion of vested vs unvested atoms of
validators and delegators before and after the ReportHackTx will
remain the same, and the hacker bounty will include some
unvested atoms, if any.

The Cosmos Hub is operated by a distributed organization that
requires a well-de�ned governance mechanism in order to
coordinate various changes to the blockchain, such as the variable

parameters of the system, as well as software upgrades and
constitutional amendments.

All validators are responsible for voting on all proposals. Failing to
vote on a proposal in a timely manner will result in the validator
being deactivated automatically for a period of time called the
 AbsenteeismPenaltyPeriod (DEFAULT 1 week).

Delegators automatically inherit the vote of the delegated
validator. This vote may be overridden manually. Unbonded atoms
get no vote.

Each proposal requires a deposit of MinimumProposalDeposit
tokens, which may be a combination of one or more tokens
including atoms. For each proposal, the voters may vote to take
the deposit. If more than half of the voters choose to take the
deposit (e.g. because the proposal was spam), the deposit goes to
the reserve pool, except any atoms which are burned.

For each proposal, voters may vote with the following options:

Yea

YeaWithForce

Nay

NayWithForce

Abstain

A strict majority of Yea or YeaWithForce votes (or Nay or
NayWithForce votes) is required for the proposal to be decided as
passed (or decided as failed), but 1/3+ can veto the majority
decision by voting “with force”. When a strict majority is vetoed,
everyone gets punished by losing VetoPenaltyFeeBlocks
(DEFAULT 1 day’s worth of blocks) worth of fees (except taxes
which will not be affected), and the party that vetoed the majority

decision will be additionally punished by losing VetoPenaltyAtoms
(DEFAULT 0.1%) of its atoms.

Any of the parameters de�ned here can be changed with the
passing of a ParameterChangeProposal .

Atoms can be in�ated and reserve pool funds spent with the
passing of a BountyProposal .

All other proposals, such as a proposal to upgrade the protocol,
will be coordinated via the generic TextProposal .

See the Plan.

There have been many innovations in blockchain consensus and
scalability in the past couple of years. This section provides a brief
survey of a select number of important ones.

Consensus in the presence of malicious participants is a problem
dating back to the early 1980s, when Leslie Lamport coined the
phrase “Byzantine fault” to refer to arbitrary process behavior that
deviates from the intended behavior, in contrast to a “crash fault”,
wherein a process simply crashes. Early solutions were discovered
for synchronous networks where there is an upper bound on

message latency, though practical use was limited to highly

controlled environments such as airplane controllers and

datacenters synchronized via atomic clocks. It was not until the

late 90s that Practical Byzantine Fault Tolerance (PBFT) [11] was

introduced as an ef�cient partially synchronous consensus

algorithm able to tolerate up to ⅓ of processes behaving

arbitrarily. PBFT became the standard algorithm, spawning many

variations, including most recently one created by IBM as part of

their contribution to Hyperledger.

The main bene�t of Tendermint consensus over PBFT is that

Tendermint has an improved and simpli�ed underlying structure,

some of which is a result of embracing the blockchain paradigm.

Tendermint blocks must commit in order, which obviates the

complexity and communication overhead associated with PBFT’s

view-changes. In Cosmos and many cryptocurrencies, there is no

need to allow for block N+i where i >= 1 to commit, when block N
itself hasn’t yet committed. If bandwidth is the reason why block N
hasn’t committed in a Cosmos zone, then it doesn’t help to use

bandwidth sharing votes for blocks N+i. If a network partition or

of�ine nodes is the reason why block N hasn’t committed, then

N+i won’t commit anyway.

In addition, the batching of transactions into blocks allows for

regular Merkle-hashing of the application state, rather than

periodic digests as with PBFT’s checkpointing scheme. This allows

for faster provable transaction commits for light-clients and faster

inter-blockchain communication.

Tendermint Core also includes many optimizations and features

that go above and beyond what is speci�ed in PBFT. For example,

the blocks proposed by validators are split into parts, Merkle-ized,

and gossipped in such a way that improves broadcasting

performance (see LibSwift [19] for inspiration). Also, Tendermint

Core doesn’t make any assumption about point-to-point

connectivity, and functions for as long as the P2P network is
weakly connected.

While not the �rst to deploy proof-of-stake (PoS), BitShares1.0 [12]
contributed considerably to research and adoption of PoS
blockchains, particularly those known as “delegated” PoS. In
BitShares, stake holders elect "witnesses", responsible for ordering
and committing transactions, and "delegates", responsible for
coordinating software updates and parameter changes.
BitShares2.0 aims to achieve high performance (100k tx/s, 1s
latency) in ideal conditions, with each block signed by a single
signer, and transaction �nality taking quite a bit longer than the
block interval. A canonical speci�cation is still in development.
Stakeholders can remove or replace misbehaving witnesses on a
daily basis, but there is no signi�cant collateral of witnesses or
delegators in the likeness of Tendermint PoS that get slashed in
the case of a successful double-spend attack.

Building on an approach pioneered by Ripple, Stellar [13] re�ned a
model of Federated Byzantine Agreement wherein the processes
participating in consensus do not constitute a �xed and globally
known set. Rather, each process node curates one or more
“quorum slices”, each constituting a set of trusted processes. A
“quorum” in Stellar is de�ned to be a set of nodes that contain at
least one quorum slice for each node in the set, such that
agreement can be reached.

The security of the Stellar mechanism relies on the assumption
that the intersection of any two quorums is non-empty, while the
availability of a node requires at least one of its quorum slices to
consist entirely of correct nodes, creating a trade-off between
using large or small quorum-slices that may be dif�cult to balance
without imposing signi�cant assumptions about trust. Ultimately,

nodes must somehow choose adequate quorum slices for there to
be suf�cient fault-tolerance (or any “intact nodes” at all, of which
much of the results of the paper depend on), and the only
provided strategy for ensuring such a con�guration is hierarchical
and similar to the Border Gateway Protocol (BGP), used by top-
tier ISPs on the internet to establish global routing tables, and by
that used by browsers to manage TLS certi�cates; both notorious
for their insecurity.

The criticism in the Stellar paper of the Tendermint-based proof-
of-stake systems is mitigated by the token strategy described
here, wherein a new type of token called the atom is issued that
represent claims to future portions of fees and rewards. The
advantage of Tendermint-based proof-of-stake, then, is its relative
simplicity, while still providing suf�cient and provable security
guarantees.

BitcoinNG is a proposed improvement to Bitcoin that would allow
for forms of vertical scalability, such as increasing the block size,
without the negative economic consequences typically associated
with such a change, such as the disproportionately large impact
on small miners. This improvement is achieved by separating
leader election from transaction broadcast: leaders are �rst
elected by proof-of-work in “micro-blocks”, and then able to
broadcast transactions to be committed until a new micro-block
is found. This reduces the bandwidth requirements necessary to
win the PoW race, allowing small miners to more fairly compete,
and allowing transactions to be committed more regularly by the
last miner to �nd a micro-block.

Casper [16] is a proposed proof-of-stake consensus algorithm for
Ethereum. Its prime mode of operation is “consensus-by-bet”. By
letting validators iteratively bet on which block they believe will

become committed into the blockchain based on the other bets

that they have seen so far, �nality can be achieved eventually. link.

This is an active area of research by the Casper team. The

challenge is in constructing a betting mechanism that can be

proven to be an evolutionarily stable strategy. The main bene�t of

Casper as compared to Tendermint may be in offering “availability

over consistency” – consensus does not require a >⅔ quorum of

voting power – perhaps at the cost of commit speed or

implementation complexity.

The Interledger Protocol [14] is not strictly a scalability solution. It

provides an ad hoc interoperation between different ledger

systems through a loosely coupled bilateral relationship network.

Like the Lightning Network, the purpose of ILP is to facilitate

payments, but it speci�cally focuses on payments across disparate

ledger types, and extends the atomic transaction mechanism to

include not only hash-locks, but also a quorum of notaries (called

the Atomic Transport Protocol). The latter mechanism for

enforcing atomicity in inter-ledger transactions is similar to

Tendermint’s light-client SPV mechanism, so an illustration of the

distinction between ILP and Cosmos/IBC is warranted, and

provided below.

1. The notaries of a connector in ILP do not support membership

changes, and do not allow for �exible weighting between

notaries. On the other hand, IBC is designed speci�cally for

blockchains, where validators can have different weights, and

where membership can change over the course of the

blockchain.

2. As in the Lightning Network, the receiver of payment in ILP

must be online to send a con�rmation back to the sender. In a

token transfer over IBC, the validator-set of the receiver’s
blockchain is responsible for providing con�rmation, not the
receiving user.

3. The most striking difference is that ILP’s connectors are not
responsible or keeping authoritative state about payments,
whereas in Cosmos, the validators of a hub are the authority of
the state of IBC token transfers as well as the authority of the
amount of tokens held by each zone (but not the amount of
tokens held by each account within a zone). This is the
fundamental innovation that allows for secure asymmetric
transfer of tokens from zone to zone; the analog to ILP’s
connector in Cosmos is a persistent and maximally secure
blockchain ledger, the Cosmos Hub.

4. The inter-ledger payments in ILP need to be backed by an
exchange orderbook, as there is no asymmetric transfer of
coins from one ledger to another, only the transfer of value or
market equivalents.

Sidechains [15] are a proposed mechanism for scaling the Bitcoin
network via alternative blockchains that are “two-way pegged” to
the Bitcoin blockchain. (Two-way pegging is equivalent to
bridging. In Cosmos we say "bridging" to distinguish from market-
pegging). Sidechains allow bitcoins to effectively move from the
Bitcoin blockchain to the sidechain and back, and allow for
experimentation in new features on the sidechain. As in the
Cosmos Hub, the sidechain and Bitcoin serve as light-clients of
each other, using SPV proofs to determine when coins should be
transferred to the sidechain and back. Of course, since Bitcoin
uses proof-of-work, sidechains centered around Bitcoin suffer
from the many problems and risks of proof-of-work as a
consensus mechanism. Furthermore, this is a Bitcoin-maximalist
solution that doesn’t natively support a variety of tokens and

inter-zone network topology as Cosmos does. That said, the core
mechanism of the two-way peg is in principle the same as that
employed by the Cosmos network.

Ethereum is currently researching a number of different strategies
to shard the state of the Ethereum blockchain to address
scalability needs. These efforts have the goal of maintaining the
abstraction layer offered by the current Ethereum Virtual Machine
across the shared state space. Multiple research efforts are
underway at this time. [18][22]

Cosmos and Ethereum 2.0 Mauve [22] have different design goals.

Cosmos is speci�cally about tokens. Mauve is about scaling
general computation.

Cosmos is not bound to the EVM, so even different VMs can
interoperate.

Cosmos lets the zone creator determine who validates the
zone.

Anyone can start a new zone in Cosmos (unless governance
decides otherwise).

The hub isolates zone failures so global token invariants are
preserved.

The Lightning Network is a proposed token transfer network
operating at a layer above the Bitcoin blockchain (and other public
blockchains), enabling improvement of many orders of magnitude
in transaction throughput by moving the majority of transactions
outside of the consensus ledger into so-called “payment channels”.

This is made possible by on-chain cryptocurrency scripts, which
enable parties to enter into bilateral stateful contracts where the
state can be updated by sharing digital signatures, and contracts
can be closed by �nally publishing evidence onto the blockchain, a
mechanism �rst popularized by cross-chain atomic swaps. By
opening payment channels with many parties, participants in the
Lightning Network can become focal points for routing the
payments of others, leading to a fully connected payment channel
network, at the cost of capital being tied up on payment channels.

While the Lightning Network can also easily extend across
multiple independent blockchains to allow for the transfer of value
via an exchange market, it cannot be used to asymmetrically
transfer tokens from one blockchain to another. The main bene�t
of the Cosmos network described here is to enable such direct
token transfers. That said, we expect payment channels and the
Lightning Network to become widely adopted along with our
token transfer mechanism, for cost-saving and privacy reasons.

Segregated Witness is a Bitcoin improvement proposal link that
aims to increase the per-block transaction throughput 2X or 3X,
while simultaneously making block syncing faster for new nodes.
The brilliance of this solution is in how it works within the
limitations of Bitcoin’s current protocol and allows for a soft-fork
upgrade (i.e. clients with older versions of the software will
continue to function after the upgrade). Tendermint, being a new
protocol, has no design restrictions, so it has a different scaling
priorities. Primarily, Tendermint uses a BFT round-robin algorithm
based on cryptographic signatures instead of mining, which
trivially allows horizontal scaling through multiple parallel
blockchains, while regular, more frequent block commits allow for
vertical scaling as well.

A well designed consensus protocol should provide some
guarantees in the event that the tolerance capacity is exceeded
and the consensus fails. This is especially necessary in economic
systems, where Byzantine behaviour can have substantial �nancial
reward. The most important such guarantee is a form of fork-
accountability, where the processes that caused the consensus to
fail (ie. caused clients of the protocol to accept different values - a
fork) can be identi�ed and punished according to the rules of the
protocol, or, possibly, the legal system. When the legal system is
unreliable or excessively expensive to invoke, validators can be
forced to make security deposits in order to participate, and those
deposits can be revoked, or slashed, when malicious behaviour is
detected [10].

Note this is unlike Bitcoin, where forking is a regular occurence
due to network asynchrony and the probabilistic nature of �nding
partial hash collisions. Since in many cases a malicious fork is
indistinguishable from a fork due to asynchrony, Bitcoin cannot
reliably implement fork-accountability, other than the implicit
opportunity cost paid by miners for mining an orphaned block.

We call the voting stages PreVote and PreCommit. A vote can be for
a particular block or for Nil. We call a collection of >⅔ PreVotes
for a single block in the same round a Polka, and a collection of >⅔
PreCommits for a single block in the same round a Commit. If >⅔
PreCommit for Nil in the same round, they move to the next
round.

Note that strict determinism in the protocol incurs a weak
synchrony assumption as faulty leaders must be detected and

skipped. Thus, validators wait some amount of time,

TimeoutPropose, before they Prevote Nil, and the value of

TimeoutPropose increases with each round. Progression through

the rest of a round is fully asynchronous, in that progress is only

made once a validator hears from >⅔ of the network. In practice,

it would take an extremely strong adversary to inde�nitely thwart

the weak synchrony assumption (causing the consensus to fail to

ever commit a block), and doing so can be made even more

dif�cult by using randomized values of TimeoutPropose on each

validator.

An additional set of constraints, or Locking Rules, ensure that the

network will eventually commit just one block at each height. Any

malicious attempt to cause more than one block to be committed

at a given height can be identi�ed. First, a PreCommit for a block

must come with justi�cation, in the form of a Polka for that block.

If the validator has already PreCommit a block at round R_1, we

say they are locked on that block, and the Polka used to justify the

new PreCommit at round R_2 must come in a round R_polka
where R_1 < R_polka <= R_2. Second, validators must Propose

and/or PreVote the block they are locked on. Together, these

conditions ensure that a validator does not PreCommit without

suf�cient evidence as justi�cation, and that validators which have

already PreCommit cannot contribute to evidence to PreCommit

something else. This ensures both safety and liveness of the

consensus algorithm.

The full details of the protocol are described here.

The need to sync all block headers is eliminated in Tendermint-

PoS as the existence of an alternative chain (a fork) means ≥⅓ of

bonded stake can be slashed. Of course, since slashing requires

that someone share evidence of a fork, light clients should store

any block-hash commits that it sees. Additionally, light clients

could periodically stay synced with changes to the validator set, in

order to avoid long range attacks (but other solutions are

possible).

In spirit similar to Ethereum, Tendermint enables applications to

embed a global Merkle root hash in each block, allowing easily

veri�able state queries for things like account balances, the value

stored in a contract, or the existence of an unspent transaction

output, depending on the nature of the application.

Assuming a suf�ciently resilient collection of broadcast networks

and a static validator set, any fork in the blockchain can be

detected and the deposits of the offending validators slashed. This

innovation, �rst suggested by Vitalik Buterin in early 2014, solves

the nothing-at-stake problem of other proof-of-stake

cryptocurrencies (see Related Work). However, since validator sets

must be able to change, over a long range of time the original

validators may all become unbonded, and hence would be free to

create a new chain from the genesis block, incurring no cost as

they no longer have deposits locked up. This attack came to be

known as the Long Range Attack (LRA), in contrast to a Short

Range Attack, where validators who are currently bonded cause a

fork and are hence punishable (assuming a fork-accountable BFT

algorithm like Tendermint consensus). Long Range Attacks are

often thought to be a critical blow to proof-of-stake.

Fortunately, the LRA can be mitigated as follows. First, for a

validator to unbond (thereby recovering their collateral deposit

and no longer earning fees to participate in the consensus), the

deposit must be made untransferable for an amount of time

known as the “unbonding period”, which may be on the order of

weeks or months. Second, for a light client to be secure, the �rst

time it connects to the network it must verify a recent block-hash

against a trusted source, or preferably multiple sources. This

condition is sometimes referred to as “weak subjectivity”. Finally,
to remain secure, it must sync up with the latest validator set at
least as frequently as the length of the unbonding period. This
ensures that the light client knows about changes to the validator
set before a validator has its capital unbonded and thus no longer
at stake, which would allow it to deceive the client by carrying out
a long range attack by creating new blocks beginning back at a
height where it was bonded (assuming it has control of suf�ciently
many of the early private keys).

Note that overcoming the LRA in this way requires an overhaul of
the original security model of proof-of-work. In PoW, it is
assumed that a light client can sync to the current height from the
trusted genesis block at any time simply by processing the proof-
of-work in every block header. To overcome the LRA, however, we
require that a light client come online with some regularity to
track changes in the validator set, and that the �rst time they
come online they must be particularly careful to authenticate
what they hear from the network against trusted sources. Of
course, this latter requirement is similar to that of Bitcoin, where
the protocol and software must also be obtained from a trusted
source.

The above method for preventing LRA is well suited for validators
and full nodes of a Tendermint-powered blockchain because these
nodes are meant to remain connected to the network. The
method is also suitable for light clients that can be expected to
sync with the network frequently. However, for light clients that
are not expected to have frequent access to the internet or the
blockchain network, yet another solution can be used to overcome
the LRA. Non-validator token holders can post their tokens as
collateral with a very long unbonding period (e.g. much longer
than the unbonding period for validators) and serve light clients
with a secondary method of attesting to the validity of current and
past block-hashes. While these tokens do not count toward the
security of the blockchain’s consensus, they nevertheless can

provide strong guarantees for light clients. If historical block-hash
querying were supported in Ethereum, anyone could bond their
tokens in a specially designed smart contract and provide
attestation services for pay, effectively creating a market for light-
client LRA security.

Due to the de�nition of a block commit, any ≥⅓ coalition of
voting power can halt the blockchain by going of�ine or not
broadcasting their votes. Such a coalition can also censor
particular transactions by rejecting blocks that include these
transactions, though this would result in a signi�cant proportion
of block proposals to be rejected, which would slow down the rate
of block commits of the blockchain, reducing its utility and value.
The malicious coalition might also broadcast votes in a trickle so
as to grind blockchain block commits to a near halt, or engage in
any combination of these attacks. Finally, it can cause the
blockchain to fork, by double-signing or violating the locking
rules.

If a globally active adversary were also involved, it could partition
the network in such a way that it may appear that the wrong
subset of validators were responsible for the slowdown. This is not
just a limitation of Tendermint, but rather a limitation of all
consensus protocols whose network is potentially controlled by an
active adversary.

For these types of attacks, a subset of the validators should
coordinate through external means to sign a reorg-proposal that
chooses a fork (and any evidence thereof) and the initial subset of
validators with their signatures. Validators who sign such a reorg-
proposal forego their collateral on all other forks. Clients should
verify the signatures on the reorg-proposal, verify any evidence,
and make a judgement or prompt the end-user for a decision. For
example, a phone wallet app may prompt the user with a security

warning, while a refrigerator may accept any reorg-proposal

signed by +½ of the original validators by voting power.

No non-synchronous Byzantine fault-tolerant algorithm can come

to consensus when ≥⅓ of voting power are dishonest, yet a fork

assumes that ≥⅓ of voting power have already been dishonest by

double-signing or lock-changing without justi�cation. So, signing

the reorg-proposal is a coordination problem that cannot be

solved by any non-synchronous protocol (i.e. automatically, and

without making assumptions about the reliability of the

underlying network). For now, we leave the problem of reorg-

proposal coordination to human coordination via social consensus

on internet media. Validators must take care to ensure that there

are no remaining network partitions prior to signing a reorg-

proposal, to avoid situations where two con�icting reorg-

proposals are signed.

Assuming that the external coordination medium and protocol is

robust, it follows that forks are less of a concern than censorship

attacks.

In addition to forks and censorship, which require ≥⅓ Byzantine

voting power, a coalition of >⅔ voting power may commit

arbitrary, invalid state. This is characteristic of any (BFT)

consensus system. Unlike double-signing, which creates forks

with easily veri�able evidence, detecting committment of an

invalid state requires non-validating peers to verify whole blocks,

which implies that they keep a local copy of the state and execute

each transaction, computing the state root independently for

themselves. Once detected, the only way to handle such a failure

is via social consensus. For instance, in situations where Bitcoin

has failed, whether forking due to software bugs (as in March

2013), or committing invalid state due to Byzantine behavior of

miners (as in July 2015), the well connected community of

businesses, developers, miners, and other organizations

established a social consensus as to what manual actions were

required by participants to heal the network. Furthermore, since

validators of a Tendermint blockchain may be expected to be

identi�able, commitment of an invalid state may even be

punishable by law or some external jurisprudence, if desired.

ABCI consists of 3 primary message types that get delivered from

the core to the application. The application replies with

corresponding response messages.

The AppendTx message is the work horse of the application. Each

transaction in the blockchain is delivered with this message. The

application needs to validate each transactions received with the

AppendTx message against the current state, application protocol,

and the cryptographic credentials of the transaction. A validated

transaction then needs to update the application state — by

binding a value into a key values store, or by updating the UTXO

database.

The CheckTx message is similar to AppendTx, but it’s only for

validating transactions. Tendermint Core’s mempool �rst checks

the validity of a transaction with CheckTx, and only relays valid

transactions to its peers. Applications may check an incrementing

nonce in the transaction and return an error upon CheckTx if the

nonce is old.

The Commit message is used to compute a cryptographic

commitment to the current application state, to be placed into the

next block header. This has some handy properties.

Inconsistencies in updating that state will now appear as

blockchain forks which catches a whole class of programming

errors. This also simpli�es the development of secure lightweight

clients, as Merkle-hash proofs can be veri�ed by checking against

the block-hash, and the block-hash is signed by a quorum of

validators (by voting power).

Additional ABCI messages allow the application to keep track of

and change the validator set, and for the application to receive the

block information, such as the height and the commit votes.

ABCI requests/responses are simple Protobuf messages. Check

out the schema �le.

Arguments:

Data ([]byte) : The request transaction bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : Result bytes, if any

Log (string) : Debug or error message

Usage:

Append and run a transaction. If the transaction is valid,

returns CodeType.OK

Arguments:

Data ([]byte) : The request transaction bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : Result bytes, if any

Log (string) : Debug or error message

Usage:

Validate a transaction. This message should not mutate the

state. Transactions are �rst run through CheckTx before

broadcast to peers in the mempool layer. You can make

CheckTx semi-stateful and clear the state upon Commit or

BeginBlock , to allow for dependent sequences of transactions

in the same block.

Returns:

Data ([]byte) : The Merkle root hash

Log (string) : Debug or error message

Usage:
 Return a Merkle root hash of the application state.

Arguments:

Data ([]byte) : The query request bytes

Returns:

Code (uint32) : Response code

Data ([]byte) : The query response bytes

Log (string) : Debug or error message

Usage:
 Flush the response queue. Applications that implement

types.Application need not implement this message – it’s
handled by the project.

Returns:

Data ([]byte) : The info bytes

Usage:
 Return information about the application state. Application

speci�c.

Arguments:

Key (string) : Key to set

Value (string) : Value to set for key

Returns:

Log (string) : Debug or error message

Usage:

Set application options. E.g. Key=“mode”, Value=“mempool” for

a mempool connection, or Key=“mode”, Value=“consensus” for

a consensus connection. Other options are application speci�c.

Arguments:

Validators ([]Validator) : Initial genesis-validators

Usage:

Called once upon genesis

Arguments:

Height (uint64) : The block height that is starting

Usage:

Signals the beginning of a new block. Called prior to any

AppendTxs.

Arguments:

Height (uint64) : The block height that ended

Returns:

Validators ([]Validator) : Changed validators with new

voting powers (0 to remove)

Usage:

Signals the end of a block. Called prior to each Commit after all

transactions

See the ABCI repository for more details.

There are several reasons why a sender may want the
acknowledgement of delivery of a packet by the receiving chain.
For example, the sender may not know the status of the
destination chain, if it is expected to be faulty. Or, the sender may
want to impose a timeout on the packet (with the MaxHeight
packet �eld), while any destination chain may suffer from a denial-
of-service attack with a sudden spike in the number of incoming
packets.

In these cases, the sender can require delivery acknowledgement
by setting the initial packet status to AckPending . Then, it is the
receiving chain’s responsibility to con�rm delivery by including an
abbreviated IBCPacket in the app Merkle hash.

First, an IBCBlockCommit and IBCPacketTx are posted on “Hub”
that proves the existence of an IBCPacket on “Zone1”. Say that
 IBCPacketTx has the following value:

FromChainID : “Zone1”

FromBlockHeight : 100 (say)

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200 (say)

Status : AckPending

Type : “coin”

MaxHeight : 350 (say “Hub” is currently at height 300)

Payload : <The bytes of a “coin” payload>

Next, an IBCBlockCommit and IBCPacketTx are posted on “Zone2”

that proves the existence of an IBCPacket on “Hub”. Say that

 IBCPacketTx has the following value:

FromChainID : “Hub”

FromBlockHeight : 300

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

Status : AckPending

Type : “coin”

MaxHeight : 350

Payload : <The same bytes of a “coin” payload>

Next, “Zone2” must include in its app-hash an abbreviated packet

that shows the new status of AckSent . An IBCBlockCommit and

 IBCPacketTx are posted back on “Hub” that proves the existence

of an abbreviated IBCPacket on "Zone2". Say that IBCPacketTx

has the following value:

FromChainID : “Zone2”

FromBlockHeight : 400 (say)

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

Status : AckSent

Type : “coin”

MaxHeight : 350

PayloadHash : <The hash bytes of the same “coin” payload>

Finally, “Hub” must update the status of the packet from

 AckPending to AckReceived . Evidence of this new �nalized status

should go back to "Zone2". Say that IBCPacketTx has the following

value:

FromChainID : “Hub”

FromBlockHeight : 301

Packet : an IBCPacket :

Header : an IBCPacketHeader :

SrcChainID : “Zone1”

DstChainID : “Zone2”

Number : 200

Status : AckReceived

Type : “coin”

MaxHeight : 350

PayloadHash : <The hash bytes of the same “coin” payload>

Meanwhile, “Zone1” may optimistically assume successful delivery

of a "coin" packet unless evidence to the contrary is proven on

“Hub”. In the example above, if “Hub” had not received an AckSent

status from “Zone2” by block 350, it would have set the status
automatically to Timeout . This evidence of a timeout can get
posted back on “Zone1”, and any tokens can be returned.

There are two types of Merkle trees supported in the
Tendermint/Cosmos ecosystem: The Simple Tree, and the IAVL+
Tree.

The Simple Tree is a Merkle tree for a static list of elements. If the
number of items is not a power of two, some leaves will be at
different levels. Simple Tree tries to keep both sides of the tree the
same height, but the left may be one greater. This Merkle tree is
used to Merkle-ize the transactions of a block, and the top level
elements of the application state root.

The purpose of the IAVL+ data structure is to provide persistent

storage for key-value pairs in the application state such that a

deterministic Merkle root hash can be computed ef�ciently. The

tree is balanced using a variant of the AVL algorithm, and all

operations are O(log(n)).

In an AVL tree, the heights of the two child subtrees of any node

differ by at most one. Whenever this condition is violated upon an

update, the tree is rebalanced by creating O(log(n)) new nodes that

point to unmodi�ed nodes of the old tree. In the original AVL

algorithm, inner nodes can also hold key-value pairs. The AVL+

algorithm (note the plus) modi�es the AVL algorithm to keep all

values on leaf nodes, while only using branch-nodes to store keys.

This simpli�es the algorithm while keeping the merkle hash trail

short.

The AVL+ Tree is analogous to Ethereum’s Patricia tries. There are

tradeoffs. Keys do not need to be hashed prior to insertion in

IAVL+ trees, so this provides faster ordered iteration in the key

space which may bene�t some applications. The logic is simpler to

implement, requiring only two types of nodes – inner nodes and

leaf nodes. The Merkle proof is on average shorter, being a

 *
 / \
 / \

 / \
 / \
 * *
 / \ / \
 / \ / \
 / \ / \
 * * * h6
 / \ / \ / \
 h0 h1 h2 h3 h4 h5

 A SimpleTree with 7 elements

balanced binary tree. On the other hand, the Merkle root of an
IAVL+ tree depends on the order of updates.

We will support additional ef�cient Merkle trees, such as
Ethereum’s Patricia Trie when the binary variant becomes
available.

In the canonical implementation, transactions are streamed to the
Cosmos hub application via the ABCI interface.

The Cosmos Hub will accept a number of primary transaction
types, including SendTx , BondTx , UnbondTx , ReportHackTx ,
 SlashTx , BurnAtomTx , ProposalCreateTx , and ProposalVoteTx ,
which are fairly self-explanatory and will be documented in a
future revision of this paper. Here we document the two primary
transaction types for IBC: IBCBlockCommitTx and IBCPacketTx .

An IBCBlockCommitTx transaction is composed of:

ChainID (string) : The ID of the blockchain

BlockHash ([]byte) : The block-hash bytes, the Merkle root
which includes the app-hash

BlockPartsHeader (PartSetHeader) : The block part-set header
bytes, only needed to verify vote signatures

BlockHeight (int) : The height of the commit

BlockRound (int) : The round of the commit

Commit ([]Vote) : The >⅔ Tendermint Precommit votes that
comprise a block commit

ValidatorsHash ([]byte) : A Merkle-tree root hash of the new
validator set

ValidatorsHashProof (SimpleProof) : A SimpleTree Merkle-
proof for proving the ValidatorsHash against the BlockHash

AppHash ([]byte) : A IAVLTree Merkle-tree root hash of the
application state

AppHashProof (SimpleProof) : A SimpleTree Merkle-proof for
proving the AppHash against the BlockHash

An IBCPacket is composed of:

Header (IBCPacketHeader) : The packet header

Payload ([]byte) : The bytes of the packet payload. Optional

PayloadHash ([]byte) : The hash for the bytes of the packet.
Optional

Either one of Payload or PayloadHash must be present. The hash
of an IBCPacket is a simple Merkle root of the two items, Header
and Payload . An IBCPacket without the full payload is called an
abbreviated packet.

An IBCPacketHeader is composed of:

SrcChainID (string) : The source blockchain ID

DstChainID (string) : The destination blockchain ID

Number (int) : A unique number for all packets

Status (enum) : Can be one of AckPending , AckSent ,
AckReceived , NoAck , or Timeout

Type (string) : The types are application-dependent. Cosmos
reserves the "coin" packet type

MaxHeight (int) : If status is not NoAckWanted or AckReceived
by this height, status becomes Timeout . Optional

An IBCPacketTx transaction is composed of:

FromChainID (string) : The ID of the blockchain which is

providing this packet; not necessarily the source

FromBlockHeight (int) : The blockchain height in which the

following packet is included (Merkle-ized) in the block-hash of

the source chain

Packet (IBCPacket) : A packet of data, whose status may be one

of AckPending , AckSent , AckReceived , NoAck , or Timeout

PacketProof (IAVLProof) : A IAVLTree Merkle-proof for proving

the packet’s hash against the AppHash of the source chain at

given height

The sequence for sending a packet from “Zone1” to “Zone2”

through the "Hub" is depicted in {Figure X}. First, an IBCPacketTx

proves to "Hub" that the packet is included in the app-state of

“Zone1”. Then, another IBCPacketTx proves to “Zone2” that the

packet is included in the app-state of “Hub”. During this

procedure, the IBCPacket �elds are identical: the SrcChainID is

always “Zone1”, and the DstChainID is always "Zone2".

The PacketProof must have the correct Merkle-proof path, as

follows:

When “Zone1” wants to send a packet to “Zone2” through “Hub”,

the IBCPacket data are identical whether the packet is Merkle-

ized on “Zone1”, the “Hub”, or “Zone2”. The only mutable �eld is

 Status for tracking delivery.

We thank our friends and peers for assistance in conceptualizing,

reviewing, and providing support for our work with Tendermint

and Cosmos.

IBC/<SrcChainID>/<DstChainID>/<Number>

Zaki Manian of SkuChain provided much help in formatting and
wording, especially under the ABCI section

Jehan Tremback of Althea and Dustin Byington for helping with
initial iterations

Andrew Miller of Honey Badger for feedback on consensus

Greg Slepak for feedback on consensus and wording

Also thanks to Bill Gleim and Seunghwan Han for various
contributions.

Your name and organization here for your contribution

1 Bitcoin: https://bitcoin.org/bitcoin.pdf

2 ZeroCash: http://zerocash-project.org/paper

3 Ethereum: https://github.com/ethereum/wiki/wiki/White-
Paper

4 TheDAO:
https://download.slock.it/public/DAO/WhitePaper.pdf

5 Segregated Witness:
https://github.com/bitcoin/bips/blob/master/bip-
0141.mediawiki

6 BitcoinNG: https://arxiv.org/pdf/1510.02037v2.pdf

7 Lightning Network: https://lightning.network/lightning-
network-paper-DRAFT-0.5.pdf

8 Tendermint:
https://github.com/tendermint/tendermint/wiki

9 FLP Impossibility:
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

10 Slasher: https://blog.ethereum.org/2014/01/15/slasher-a-
punitive-proof-of-stake-algorithm/

11 PBFT: http://pmg.csail.mit.edu/papers/osdi99.pdf

12 BitShares: https://bitshares.org/technology/delegated-
proof-of-stake-consensus/

13 Stellar: https://www.stellar.org/papers/stellar-consensus-

protocol.pdf

14 Interledger: https://interledger.org/rfcs/0001-interledger-

architecture/

15 Sidechains: https://blockstream.com/sidechains.pdf

16 Casper:

https://blog.ethereum.org/2015/08/01/introducing-casper-

friendly-ghost/

17 ABCI: https://github.com/tendermint/abci

18 Ethereum Sharding:

https://github.com/ethereum/EIPs/issues/53

19 LibSwift:

http://www.ds.ewi.tudelft.nl/�leadmin/pds/papers/Performa

nceAnalysisOfLibswift.pdf

20 DLS:

http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf

21 Thin Client Security:

https://en.bitcoin.it/wiki/Thin_Client_Security

22 Ethereum 2.0 Mauve Paper:

http://vitalik.ca/�les/mauve_paper.html

https://www.docdroid.net/ec7xGzs/314477721-ethereum-

platform-review-opportunities-and-challenges-for-private-

and-consortium-blockchains.pdf.html

�

è

�

